Proofs in Polyadic QL
Construct proofs for the following arguments:
- (∃x)(Ax
& ~(∃y)(By & Lxy)), (x)(Ex
⊃ Bx) // (∃x)(Ax
& (y)(Ey
⊃ ~Lxy))
-
(x)(y)((Hx & Oxy)
⊃
By), (x)(Bx
⊃ ~Sx) // (x)(y)((Hx
& Oxy)
⊃ ~Sy)
- (x)(y)(Rxy
⊃
~Ryx) // (x)~Rxx
- (x)~Rxx, (x)(y)(z)((Rxy & Ryz)
⊃
Rxz) // (x)(y)(Rxy
⊃
~Ryx)
- (x)(y)(Fxy
≡
(Gx & ~Gy)), (∃x)(∃y)(Fxy
& Fyx) // (∃x)(Gx & ~Gx)
-
(x)(y)(Fxy
⊃
Gxy), (x)(y)(Gxy
⊃ Hxy)
// (x)(y)(Fxy
⊃ Hxy)
-
(x)((Tx & Sx)
⊃ Lax), (∃x)~(~Tx
v ~Sx) // (∃x)Lax
-
(x)Lax, (∃x)(Lax
& Lxb), (x)(y)(Lxy
⊃
Lyx) // Lba
-
(x)((Wx v Cx)
⊃ Eax) // (x)(Wx
⊃
Eax)
Prove the following theorems:
- (x)(y)Bxy
⊃
(∃x)(∃y)Bxy
- (∃x)(y)(z)Rxyz
⊃
(y)(z)(∃x)Rxyz
-
(∃x)(∃y)(∃z)((Axy
&Ayz)
⊃ Axz)
-
(Lab & ~Lba)
⊃ ~(x)(y)(Lxy
⊃
Lyx)