Proofs in Polyadic QL - Solutions

(x)(y)(z)((Axy &Ayz) Axz)

Proof:

1. ~(x)(y)(z)((Axy &Ayz) Axz) assump., I.P sp1
2. (x)~(y)(z)((Axy &Ayz) Axz) Q.N. 1 sp1
3. (x)(y)~(z)((Axy &Ayz) Axz) Q.N. 2 sp1
4. (x)(y)(z)~((Axy &Ayz) Axz) Q.N. 3 sp1
5. (y)(z)~((Aay &Ayz) Aaz) U.I. 4 sp1
6. (z)~((Aaa &Aaz) Aaz) U.I. 5 sp1
7. ~((Aaa &Aaa) Aaa) U.I. 6 sp1
8. ~(~(Aaa &Aaa) v Aaa) C.E. 7 sp1
9. (~~(Aaa &Aaa) & ~Aaa) DEM, 8 sp1
10. (Aaa &Aaa) & ~Aaa) D.N. 9 sp1
11. Aaa & ~Aaa REP, 10 sp1
12. (x)(y)(z)((Axy &Ayz) Axz) I.P. 1-11