Construct proofs of
arguments in QL
Prove the following arguments. Click on selected problems
for solutions.
- (x)(Ax
⊃
Bx), (x)Ax /// (x)Bx
- (x)(Sx
⊃
Px) /// ~(∃x)(Sx
& ~Px) [Do this without using C.Q.N.]
- (∃x)(Sx
v Px), (x)~Sx /// (∃x)Px
-
(∃x)(Tx
& Rx), (∃x)(Tx
& Bx), (x)(Rx
⊃
~Bx) ///~(x)(Tx
⊃
Rx)
- (x)(Mx
⊃ ~Px),
(x)(Sx
⊃
Mx) /// (x)(Sx
⊃
~Px)
- (x)(Ax
⊃ ~Bx),
(∃x)(Ax
& Cx) /// (∃x)(Cx & ~Bx)
- ~(∃x)(Mx & ~Px), ~(x)(Mx
⊃
~Sx) /// (∃x)(Sx
& Px)
- (Sa
⊃ (∃x)Px),
(x)Sx, /// (∃x)(~Rx
v Px)
-
(∃x)(Rx
& Sx), (x)(Rx
⊃ ~Px)
/// (∃x)(Rx
& ~Px)
- (x)(~Tx
⊃
Ux), (∃x)~Ux
/// (∃x)Tx