Jim Whitney Economics 250

Monday, March 04, 2013

 

Input-output relationships for the Cobb-Douglas production function

The production formula: Q = Bo·LBL ·KBK, where Q=output, L=labor, K=capital, and Bo, BL and BK are positive parameters.

    1. Elasticity of output for a Cobb-Douglas production function: the exponent on each factor of production = the elasticity of output (Q) with respect to that factor.
    So for the function here, BL = %
DQ/%DL = eQ,L and BK = %DQ/%DK = eQ,K.

Proof: Consider eQ,L, and recall the formula for a point elasticity estimate, which in this case would be:

              dQ  L
   eQ,L = --- · --.
             
dL   Q

Calculating dQ/dL:

    dQ                                       BL· Bo·LBL·KBK     BL· Q
    --- = BL· Bo·LBL-1·KBK = --------------------- = -------- (since Q = Bo·LBL·KBK).
    
dL                                                   L                       L

Cutting out the middle terms to summarize results, we have:

    dQ     BL· Q
    --- = ---------
    
dL         L

We can then multiply both sides by L/Q to isolate the BL term:

             dQ    L
    BL = --- · --- which = eQ,L.
             
dL    Q 

    2. Returns to scale for a Cobb-Douglas production function: the sum of the exponents on the factors of production = the elasticity of output (Q) with respect to the scale of production.

Proof: Since each exponent is the elasticity of output with respect to the related factor of production, we have:
   BL = %
DQ/%DL  which =>  %DQ = BL·%DL, and
   BK = %
DQ/%DK which =>  %DQ = BK·%DK.

So when both L and K change,

   %DQ = BL·%DL + BK·%DK.

For a change in scale, %DL = %DK = %DScale, so

   %DQ = BL·%DScale + BK·%DScale =>
   %
DQ = (BL + BK)·%DScale.