Jim Whitney Economics 250

Monopoly and output (allocative) efficiency

The diagram to the right initially represents market demand and supply for a competitive industry. The supply curve represents the horizontal sum of the individual firms' marginal cost curves. (Ignore the MR curve for now.)
   The inverse demand equation is: P = 240 - 2Q.

whitespace.gif (816 bytes)
Part 1: Unregulated monopoly:
1. a. Complete the following table contrasting the situations under competition and monopoly:
 

 (1)

(2) (3)
  Competition Monopoly Change (2)-(1)
Consumer surplus      
Producer surplus      
Combined (market) surplus      
1. b. In the diagram, use the pattern "///" to shade in the the welfare (deadweight) loss caused by the monopoly.
whitespace.gif (816 bytes)
Part 2: Regulated monopoly: Now suppose that there is a price ceiling set for the monopoly at a price of $160. The price ceiling changes the price and marginal revenue situation faced by the monopolist.
2. a. Complete the following table:
   Q < or = 40 Q > 40
Price:   P = 240 - 2Q
MR:   MR = 240 - 4Q
whitespace.gif (816 bytes)
b. Add the price ceiling to your diagram, and highlight the new MR curve faced by the monopolist.
c. Given the price ceiling:
    --How much output would the monopolist choose to maximize its profits? ______
    --In the diagram (1) indicate the new output level and (2) use the pattern "\\\" to shade in the new welfare loss.
d. What output level would the monopolist choose with a price ceiling of $130? ______
    --Is the welfare loss >, <, or = the welfare loss with the price ceiling of $160? ______
e. What level of price ceiling would achieve output efficiency? ______
whitespace.gif (816 bytes)