QL Truth-Tree Exercise
Test the following arguments for validity:
(∃x)(Lx & Mx), (∃x)(Px & ~Lx) /// (x)(Px ⊃ ~Mx)
(x)(Ax ⊃ Rx) /// (∃x)(Ax & Rx)
(x)Px ⊃ (∃x)Gx, (x)~Gx /// (∃x)~Px
(x)(Ax ⊃ Bx), (∃x)(Cx & ~Bx) /// (x)(Ax v Cx)
~(x)~Tx, ~(∃x)Tx & Ga /// (x)(Fx ⊃ Tx)
(x)(Sx ⊃ Px) /// ~(∃x)(Sx & ~Px)
(∃x)(Ax & ~Bx), (∃x)(Bx & ~Cx), /// ~(x)(Ax ⊃ Cx)
Test the logical status of the following propositions:
(∃x)(Tx & ~Sx) ⊃ (∃x)~(~Sx ⊃ ~Tx)
~(x)~Cx ≡ (∃x)Cx
(x)(Fx & Gx) ⊃ (x)(Fx ⊃ Gx)
(x)(Ax ⊃ Bx) ⊃ ((x)Ax ⊃ (x)Bx)
Construct syllogisms, translate them into QL, and test them for validity using the truth-tree method. Then double check your answers by testing the syllogisms for validity using one of the three methods you learned in the Traditional Logic chapter.