Proofs V
Construct proofs for each of the following arguments using
all the resources at your disposal. Use the
general-purpose
proof form or do them on paper.
- H
⊃~S, (~H v ~S) F, F
⊃
B ///B
- ~A
⊃
B, A
⊃ E, B
⊃
S, (E v S)
⊃ X /// X
- P
⊃
Q, (~Q
⊃ ~P)
⊃
S, F
⊃ ~S //// ~F
- H
⊃
S, ~P
⊃ ~S /// H
⊃ P
- A
⊃
B, A
⊃ ~B, ~A
⊃
G ///G
- (P v P)
⊃
S, ~(~P v (Q & ~R)) /// S
-
B
≡
G, (B& G)
⊃ Z, (~B & ~G)
⊃ Z /// Z
- A
⊃
B, A
⊃ ~B /// ~A
- ~A
⊃
S, ~E
⊃ S, ~(A & E)
///S v H
- A
⊃
B, B
⊃
~A, A v B /// A
⊃ (B
⊃
E)
- P
⊃
(Q
⊃ R), R ⊃
(Q
⊃ S) ///P
⊃ (Q
⊃
S)
-
A
⊃
B, (A& B)
⊃ Q,
(H&Q)
⊃ S /// A ⊃ (H ⊃
S)
- (C
≡
D) & ~(~D v E), C
⊃ (E
v (F
⊃ ~G), (H
⊃
G) & F /// ~H
-
~(E
⊃
F), ~D
≡ E, ~A
⊃
D /// (A v B) & (A v C)
- ~F v C, G v D, ~F
⊃
~G /// C v D
Prove the following theorems:
-
~[(A ⊃
~A) & (~A ⊃ A)]
- [~(~A & ~B) & ~A]
⊃
B
- [A & (B v ~A)]
⊃
~~B
- [~A
⊃
(B & C)]
≡ [(A v B) &
(A v C)]
- A
⊃
(~A
⊃ ~B)