Proofs V
Construct proofs for each of the following arguments using
all the resources at your disposal.  Use the
general-purpose 
proof form or do them on paper. 
  - H 
		⊃~S, (~H v ~S)  F, F 
		⊃ 
  B ///B
 
  - ~A 
		⊃ 
  B, A 
		⊃ E, B 
		⊃ 
  S, (E v S) 
		⊃ X /// X
 
  - P 
		⊃ 
  Q, (~Q 
		⊃ ~P) 
		⊃ 
  S, F 
		⊃ ~S //// ~F
 
  - H 
		⊃ 
  S, ~P 
		⊃ ~S  /// H
  		⊃ P
 
  - A 
		⊃ 
  B, A 
		⊃ ~B, ~A 
		⊃ 
  G  ///G
 
  - (P v P) 
		⊃ 
  S, ~(~P v (Q & ~R)) /// S
 
  - 
  B 
			
			≡ 
  G, (B& G) 
		⊃ Z, (~B & ~G)
  		⊃ Z /// Z
 
  - A 
		⊃ 
  B, A 
		⊃ ~B /// ~A
 
  - ~A 
		⊃ 
  S, ~E 
		⊃ S, ~(A & E)  
  ///S v H
 
  - A 
		⊃ 
  B, B 
		⊃ 
  ~A,  A v B /// A 
		⊃ (B 
		⊃ 
  E)
 
  - P  
		⊃ 
  (Q 
		⊃ R), R ⊃ 
  (Q  
		⊃ S) ///P 
  		⊃ (Q  
		⊃ 
  S)
 
  - 
  A  
		⊃ 
  B, (A& B)  
		⊃ Q, 
  (H&Q)  
		⊃ S /// A ⊃ (H ⊃ 
  S)
 
	- (C 
			
			≡ 
	D) & ~(~D v E), C 
		⊃ (E 
	v (F 
		⊃ ~G), (H 
		⊃ 
	G) & F    /// ~H
 
	- 
	~(E 
		⊃ 
	F), ~D 
			
			≡ E, ~A 
		⊃ 
	D  /// (A v B) & (A v C)
 
	- ~F v C, G v D, ~F 
		⊃ 
	~G  /// C v D
 
Prove the following theorems:
  - 
  ~[(A ⊃ 
  ~A) & (~A ⊃ A)]
 
  - [~(~A & ~B) & ~A]  
		⊃ 
  B
 
  - [A & (B v ~A)]  
		⊃ 
  ~~B
 
	- [~A 
		⊃ 
	(B & C)] 
			
			≡ [(A v B) & 
	(A v C)]
 
	- A 
		⊃ 
	(~A 
		⊃ ~B)