Proofs II, #7
derive B
1. | (A ≡ B) ⊃ C | premise | |
2. | ~(C v A) | premise | |
3. | ~C & ~A | DEM | 2 |
4. | ~C | simp | 3 |
5. | ~(A ≡ B) | m.t. | 1,4 |
6. | ~[(A ⊃ B) & (B ⊃ A)] | BE | 5 |
7. | ~[(~A v B) & (B ⊃ A)] | CE | 6 |
8. | ~[(~A v B) & (~B v A)] | CE | 7 |
9. | ~(~A v B) v ~(~B v A) | DEM | 8 |
10. | (~~A & ~B) v ~(~B v A) | DEM | 9 |
11. | (~~A & ~B) v (~~B & ~A) | DEM | 10 |
12. | (A & ~B) v (~~B & ~A) | DN | 11 |
13. | (A & ~B) v (B & ~A) | DN | 12 |
14. | ~A | simp | 3 |
15. | ~A v B | disj | 14 |
16. | ~(A & ~B) | DEM | 15 |
17. | (B & ~A) | d.s. | 13,16 |
18. | B | simp | 17 |