Proofs I
Construct proofs for each of the following arguments without using
conditional proof or indirect proof. Convention: "///" separates the
premises from the conclusion. You may do these with paper and pencil, or
you may download and use the
general purpose proof form.
- ~K,
C
⊃ (A & B), K v C, /// A & B
- A
⊃ B, B
⊃ A, B,
/// A & B
-
R & (A
⊃ C), C
⊃
B, /// A
⊃ B
-
A ⊃ (C v D),
~(C
v D), /// B v ~A
-
H
⊃(K
⊃ L), N
⊃
M, N, /// (K
⊃ L)
v
M
-
(H
⊃ B) & (J
⊃
A), R & (H v J), /// B
v
A
-
A v
~B,
~A,
/// ~A &
~B
- K
⊃ L, L
⊃ M, (K
⊃ M)
⊃ M, /// M
- A
⊃ B, A v
~Z,
~B /// ~Z
- L
⊃ (M
⊃ P), (P
⊃
R) v ~(M
⊃ P), R & ~(P
⊃
R) /// ~L v (M
⊃ P)
- C v ~E, ~E
⊃
(B & ~C), T
⊃ ~C, C
⊃ E, ~C /// B
- L
⊃
(M
⊃ R), (~L
⊃ S), (~S & M), (Q
⊃ T) /// (R v T)
-
(R
⊃
P) v ~S, (R
⊃ P)
⊃
(A & ~B), ~S ⊃P, ~P /// ~B
- (A & B), L
⊃
(B
⊃ U), (A v R)
⊃ L /// U
- (~A & B)
⊃
C, ~P
⊃ B, ~S, (~P &
~A) v S /// C v (A v B)
- (P v ~Q) v ~R, (S v T)
⊃
~~R, ~P & S /// ~Q
-
R
⊃
(~B
⊃
~C), ((L v ~Q) & R), (L
⊃
~R), (~Q
⊃ Z) /// (~C
v Z)
|