Proving Categorical Quantifier Negations
Prove the following theorems in QL. For this you need only Conditional Proof, the Equivalence Rules, and basic Quantifier Negation Rules.
(x)(Sx ⊃ Px) ≡ ~(∃x)(Sx & ~Px)
~(x)(Sx ⊃ Px) ≡ (∃x)(Sx & ~Px)
~(x)(Sx ⊃ ~Px) ≡ (∃x)(Sx & Px)
(x)(Sx ⊃ ~Px) ≡ ~(∃x)(Sx & Px)