Easy Proofs in QL

Prove the following arguments. Click on selected problems for solutions.

 

  1. (x)Sx (x)Px, (x)~Px & (x)Gx  /// (x)~Sx
  2. (x)Fx /// (x)Fx
  3. (x)Ax (x)Bx, (x)Bx ~(x)Cx, /// (x)Ax (x)~Cx
  4. (x)[(Ax (Bx v ~Cx)], (x)Cx (x)Ax, (x)~Bx & (x)Ax  ///~(x)Cx
  5. (x)(Rx v ~Sx), (x)(~Sx Tx), ~Ta ///  (x)Rx
  6. Ta & ~Sa, (x)(~Sx (y)Ry) /// (x)(Rx v Mx)
  7. (x)Fx /// (x)Gx  (x)(Fx & Gx)
  8. (x)(Ax & Bx), (x)(Bx ~Cx) // (x)(~Cx & Ax)
  9. (x)(Sx Tx) // (x)(~Sx v Tx)
  10. (x)Ax (x)Bx, ~(x)~Ax // Ba
  11. (x)(~Ax v Bx), (x)Ax // (x)(Ax & Bx)
  12. ~(x)(Ax & ~Bx), ~(x)(Bx & ~Cx) // (x)(Ax Cx)
  13. (x)~(~Ax v ~Bx), ~(x)Bx v Da // (x)Dx
  14. (x)(Tx (Rx v Px), (x)(Tx & Lx), (x)(Rx ~Tx) // (x)Px
  15. (x)(Sx Tx) // (x)~Sx v (x)Tx  [note: this is a variation on 9, but a bit harder - hint: use indirect proof]