Easy
Proofs in QL
Prove the following arguments. Click on selected problems
for solutions.
- (x)Sx
⊃
(∃x)Px, (x)~Px & (∃x)Gx
/// (∃x)~Sx
- (x)Fx /// (∃x)Fx
- (x)Ax
⊃
(∃x)Bx, (∃x)Bx
⊃
~(x)Cx, /// (x)Ax
⊃ (∃x)~Cx
- (∃x)[(Ax
⊃ (Bx v ~Cx)], (∃x)Cx
⊃
(x)Ax, (x)~Bx & (x)Ax ///~(x)Cx
- (x)(Rx v ~Sx), (x)(~Sx
⊃
Tx), ~Ta /// (∃x)Rx
-
Ta & ~Sa, (x)(~Sx
⊃
(∃y)Ry) /// (∃x)(Rx
v Mx)
- (∃x)Fx
/// (x)Gx
⊃ (∃x)(Fx
& Gx)
-
(∃x)(Ax
& Bx), (x)(Bx
⊃ ~Cx) // (∃x)(~Cx
& Ax)
- (x)(Sx
⊃
Tx) // (∃x)(~Sx v Tx)
- (x)Ax
⊃
(x)Bx, ~(∃x)~Ax
// Ba
- (x)(~Ax v Bx), (∃x)Ax
// (∃x)(Ax & Bx)
- ~(∃x)(Ax
& ~Bx), ~(∃x)(Bx & ~Cx)
// (x)(Ax
⊃ Cx)
- (x)~(~Ax v ~Bx), ~(x)Bx v Da // (∃x)Dx
- (x)(Tx
⊃
(Rx v Px), (∃x)(Tx &
Lx), (x)(Rx
⊃
~Tx) // (∃x)Px
- (x)(Sx
⊃
Tx) // (∃x)~Sx v (∃x)Tx
[note: this is a variation on 9, but a bit harder - hint: use indirect
proof]