
DIFFERENT DIFFERENCES

Ron Buckmire
ron@oxy.edu

Professor of Mathematics
Occidental College
Los Angeles, CA

Pomona College
Claremont, CA

March 21, 2016

ABSTRACT
From calculus we know that a derivative of a a function can be approximated using a dif-
ference quotient. There are different forms of the difference quotient, such as the forward
difference (most common), backward difference and centered difference. I will introduce and
discuss “Mickens differences,” which are decidedly different differences for approximating
the derivatives in differential equations. Professor Ronald Mickens is an African-American
Physics Professor at Clark Atlanta University who has written nearly 300 journal articles on
this and related topics. These nonstandard finite differences can produce discrete solutions
to a wide variety of differential equations with improved accuracy over standard numerical
techniques. Applications drawn from first-semester Calculus to advanced computation fluid
dynamics will be given.

Students are very welcome to attend. Knowledge of elementary derivatives/anti-derivatives
and Taylor Approximations will be assumed.
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Introduction and Applications of
Different Differences to ODEs
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Pop Quiz!
What’s the primary difference between a curve and a
line? (This is not a “trick” question)

(a) Line (b) Curve

QUESTION
The name of the property of a graph which determines
whether that graph will be a line or a curve is called the

.

(Choose one of the following to complete the previous
sentence):

A. tangent

B. slope

C. vertical line test

D. horizontal line test
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ANSWER to Pop Quiz

The name of the property of a graph which determines
whether that graph will be a line or a curve is called the
slope.

A. tangent

B. slope ← CORRECT ANSWER!

C. vertical line test

D. horizontal line test

(RECALL from Calculus 1) The slope of a graph (or
derivative of the function being graphed) is CONSTANT
for a line. For a curve, the slope CHANGES VALUE at
every point and is given by the derivative function. The
slope of a tangent line to a graph equals the slope of the
graph at the point of tangency.

We can find the slope of a line by computing
∆y

∆x

We can find the slope of a curve by ... ?
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Calculus 1, Revisited
The forward difference formula for f ′(x) is given by

f ′(x) ≈ f (x + h)− f (x)

(x + h)− x
=
f (x + h)− f (x)

h

The backward difference formula is

f ′(x) ≈ f (x)− f (x− h)

h
The centered difference formula is

f ′(x) ≈ f (x + h)− f (x− h)

2h
One way to show that these formulas “work” is to apply
Taylor Expansions...
If a function f (x) is infinitely differentiable at a point
x = a then the Taylor Expansion for the value f (t)
about the point (a, f (a)) is given by...

f (t) ≈ f (a) + f ′(a)(t− a) + f ′′(a)
(t− a)2

2
+ ...

With a change of variables t→ x± h and a→ x

f (x + h) ≈ f (x) + f ′(x)h + f ′′(x)
h2

2
+ ...

f (x− h) ≈ f (x)− f ′(x)h + f ′′(x)
h2

2
+ ...
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A Short Primer On Numerical Analysis
(Let’s Be Discrete!)
Split up an interval a ≤ x ≤ b into N equal pieces, so

h =
b− a
N

and xk = a + kh for k = 1, 2, . . . , N

Let

uk = f (xk)

uk+1 = f (xk+1) = f (xk + h)

uk−1 = f (xk−1) = f (xk − h)

Discrete Forward Difference

du

dx
≈ uk+1 − uk

h

Discrete Backward Difference

du

dx
≈ uk − uk−1

h

Discrete Centered Difference

du

dx
≈ uk+1 − uk−1

2h

We can use these formulas to approximate derivatives in
differential equations to produce difference equations
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The Calculus Student’s Favorite Function
Consider the initial value problem (IVP)

dy

dx
= y, y(0) = 1

We know the exact solution is y(x) = ex

The discrete version of the exact solution is yk = exk

We can solve the IVP by discretizing the initial value
problem.
Using a standard finite-difference scheme the discrete form
of the IVP becomes

yk+1 − yk
h

= yk, for k = 1, 2, . . . , N and y0 = 1

which when rearranged or solved becomes

yk+1 − yk = ykh⇒ yk+1 = yk + hyk = yk(1 + h)

Applying the initial condition at k = 0

y1 = y0(1 + h) = 1 + h

when k = 1

y2 = y1(1 + h) = (1 + h)(1 + h) = (1 + h)2

when k = 2

y3 = y2(1 + h) = (1 + h)(1 + h)2 = (1 + h)3

Therefore

yk = (1 + h)k, k = 0, 1, 2, . . . N
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Computing Numerical Error
How accurate was the solution generated by the standard
finite difference scheme?
The exact solution to the differential equation (ODE)
y′ = y, y(0) = 1 is

y(x) = ex

which has a discrete analogue given by

yk = ekh

The solution to the related difference equation (O∆E)
was

yk = (1 + h)k, k = 0, 1, 2, . . . N

The error εk at any point xk = kh is given by

εk = y(xk)− yk = ehk − (1 + h)k

At k = 0 there is no error:

ε0 = e0 − (1 + h)0 = 1− 1 = 0

At k = 1

ε1 = eh − (1 + h)1 = (1 + h +
h2

2
+ ...)− (1 + h)

=
h2

2
+ ...

At k = 2

ε2 = e2h − (1 + h)2 = (1 + 2h +
(2h)2

2
+ ...)− (1 + h)2

= (1 + 2h + 2h2 + ...)− (1 + 2h + h2)

= h2 + ...
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Numerical Results for N = 10

Discrete Error as N Increases (h decreases)
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Visualization Of Numerical Solution of ODEs
Using O∆Es

ODE −→ (approximated discretely)−→ O∆E
↓ ↓

(solved) (solved)
↓ ↓

y(x) −→ (approximated discretely)−→ y(xk) ≈ yk

12



Different Differences
Professor Ronald Mickens of Clark Atlanta University has
suggested a different way to approximate the derivative

f ′(x) ≈ f (x + φ1(h))− f (x)

φ2(h)
, where φn = h + ...

Note that as h → 0 the above difference quotient yields
f ′(x) exactly as the standard formulae do.

The discrete analogue of Mickens’ suggestion is

dy

dx
≈ yk+1 − ψyk

φ(h)
, where ψ = 1+... and φ(h) = h+...

The beauty of this idea is that it gives us more flexibility
to tailor our approximation technique to the particular
differential equation we’re trying to discretize.

Most often ψ = 1 and we need to choose a denomina-
tor function φ(h)

φ(h) =



h,
sin(h),
eh − 1,

1− e−h,
h

1− h
,

1− e−λh

λ
,

...
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Application of a Mickens Difference To
A Simple Example

Suppose we reconsider the ODE
dy

dx
= y, y(0) = 1.

How do we make our choice of denominator function?
There are no firm rules which direct you in every case.
In this simple example we know the exact solution looks
exponential so we should try a choice with this functional
behavior

φ(h) = eh − 1

Our related difference equation (O∆E) would become
yk+1 − yk
eh − 1

= yk, y0 = 1

which can be rearranged to be

yk+1 = yk + φ(h)yk = yk + yk(e
h − 1)⇒ yk+1 = ehyk

Applying the initial condition at k = 0

y1 = y0e
h

When k = 1,

y2 = y1e
h = eheh = e2h

When k = 2,

y3 = y2e
h = ehe2h = e3h

Therefore,

yk = ekh, k = 0, 1, 2, . . . , N

is the discrete version of the solution to the ODE pro-
duced using the Mickens finite difference scheme.
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Error due to the Mickens Difference Method
Recall that the error εk at any point xk = kh is given by

εk = y(xk)− yk
The exact solution to the ODE is y(x) = ex

The solution to the difference equation generated by us-
ing a standard finite-difference discretization of the ODE
was yk = (1 + h)k

The solution to the difference equation generated by using
the nonstandard discretization of the ODE is yk = ekh.

Thus the numerical error of the Mickens scheme is given
by

εk = exk − ekh = ekh − ekh = 0

In other words, by making a good choice of denomina-
tor function one can produce a difference equation which
represent an exact discrete version of the solution of the
differential equation.

We have been able to “approximate” the differential equa-
tion exactly!

Was this a fluke? No!
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Application of Mickens Differences To
A Slightly Harder Problem
Consider the following boundary value problem in cylin-
drical coordinates for the function u(r)

1

r

d

dr

(
r
du

dr

)
−m2u = 0, m constant

r
du

dr

∣∣∣∣
r=0

= S,

u(1) = G.

When m = 0 the ODE becomes
d

dr

(
r
du

dr

)
= 0

with the conditions

u(r) = G at r = 1 and r
du

dr
= S at r = 0

Recall, if
d

dr
(♥) = 0⇔ ♥ = constant

Therefore r
du

dr
= constant. But our boundary condition

tells us when r = 0, r
du

dr
= S

So, we know r
du

dr
= S or

du

dr
=
S

r

which means that u = S log r+C where C is a constant
So, the exact solution u(r) of our given boundary value
problem is

u(r) = S log(r) + G
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Applying Standard Finite Differences
To The Same Problem
We can write our boundary value problem from before
as the initial value problem that we actually solved and
then use our discretization technique....

r
du

dr
= S, u(1) = G

First we split up the interval 0 < r0 ≤ r ≤ 1 into N

pieces, so rk = r0 + kh, k = 0, 1, 2, . . . N and h =
1− r0

N

The discrete version of the ODE using standard differ-
ences will be

rk
uk+1 − uk

h
= S, uN = G

which can be rearranged to produce

uk = uk+1 −
Sh

rk
, k = 0, 1, 2, . . . N − 1

We can find every value of uk on the grid by starting at
k = N since uN = G.

Then uN−1 can be computed in terms of uN , and uN−2

can be computed in terms of uN−1 and so on.

This process is called a (backward) marching scheme.
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Applying Nonstandard Finite Differences
To Another Problem
Consider again the ODE

r
du

dr
= S, u(1) = G

“Buckmire’s Method” (Ph.D. Thesis, RPI, 1994)
By manipulating the differential equation and approxi-
mating the derivatives

r
du

dr
=
du
dr
r

=
du

d(log(r))
≈ ∆u

∆(log(r))

∆u is defined as uk+1 − uk and
∆ log(r) is log(rk+1)− log(rk).

The discrete version of the ODE using Buckmire’s Method
will be

uk+1 − uk
log(rk+1)− log(rk)

= S for k = 0, 1, . . . N−1, with uN = G

which can be rearranged to be

uk = uk+1 − S[log(rk+1)− log(rk)]

= uk+1 − S log (rk+1/rk)

This is also a backward marching scheme for determining
all values of uk from k = N − 1, N − 2, . . . , 1, 0 with
uN = G
How do the two competing numerical methods compare?
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Numerical Results for m = 0 case
Let S = G = 1 and choose r0 = 10−4 and N = 100.
Then h = 1−10−4

100
We know the exact solution will be u(r) = S log r + G
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The m > 0 problem
Recall the boundary value problem is

1

r

d

dr

(
r
du

dr

)
−m2u = 0, m constant

r
du

dr

∣∣∣∣
r=0

= S,

u(1) = G.

We can simplify the derivative terms to obtain

d2u

dr2
+

1

r

du

dr
−m2u = 0

which becomes

r2d
2u

dr2
+ r

du

dr
−m2r2u = 0

If we let z = mr then this equation can be transformed
into

z2d
2u

dz2
+ z

du

dz
− z2u = 0

z2u′′ + zu′ + (m2 − z2)u = 0

The m = 0 case is known as the modified Bessel’s Equa-
tion of zeroth order.

It’s such a well-known equation that its solutions u(z) are
functions called the modified Bessel’s functions of
the first and second kind K0(z) and I0(z)
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There are numerous functions whose name we know who
are really just solutions of a differential equation. For
example, the equation

d2u

dz2
+ u = 0

has two famous solutions: sin(z) and cos(z)

When m > 0 the exact solution to our boundary value
problem can be written in terms of I0(mr) and K0(mr)

u(r) = −SK0(rm) + (G + SK0(m))
I0(rm)

I0(m)

Since we have an exact solution we can compare it to nu-
merical results generated from using standard finite dif-
ference approximations to the modified Bessel’s equation
versus using a nonstandard (Buckmire) finite difference
approximation
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Comparing Results for m > 0
Let S = G = 1 and choose N = 100 and r0 = 10−4 or
10−8. Then h = 1−r0

100
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Motivation: A Problem From Compu-
tational Fluid Dynamics)

The Kármán-Guderley equation
(K − (γ + 1)φx)φxx + φr̃r̃ + 1

r̃φr̃ = 0.

Inner boundary condition
φ(x, r̃)→ S(x) log r̃ + G(x), as r̃ → 0, |x| ≤ 1
φ(x, r̃) bounded, for r̃ = 0, |x| > 1.

Outer boundary condition
φ(x, r̃)→ D

4π
x

(x2+Kr̃2)3/2 , as (x2 + r̃2)1/2 →∞.

Figure 1: Plot of Contours Around Transonic Shock Free Body
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More Recent Motivations: The Bratu
Problem

∆u + λeu = 0, u = 0 on ∂U

In one-dimension the problem becomes

d2

dx2
u(x) + λeu(x) = 0, u(0) = u(1) = 0

and there is an exact solution

u(x) = −2 ln

(
cosh[(x− 1

2)θ2]

cosh(θ4)

)
which we can check satisfies the boundary conditions

When x = 0, u(x) becomes u(0) = 0 X

and

When x = 1, u(x) becomes u(1) = 0 X

and u(x) satisfies the differential equation u′′ = −λeu if

θ =
√

2λ cosh

(
θ

4

)
because the LHS

u′′(x) = −2 sech2

[(
x− 1

2

)
θ

2

]
θ2

4

while the RHS

−λeu(x) = −λ sech2

[(
x− 1

2

)
θ

2

]
cosh2

(
θ

4

)
24



Plots of y = θ and y =
√

2λ cosh
(
θ
4

)
for various λ

We want to get the unique solution when

θ =
√

2λ cosh

(
θ

4

)
1 =

√
2λc sinh

(
θc
4

)
1

4

which means that if we divide these two equations

θc = coth

(
θc
4

)
4

θc
4

= coth

(
θc
4

)
So θc is 4 times the fixed point of the hyperbolic cotangent
function, so θc = 4.479871456 and λc = 3.513830719
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The Bratu Problem In Radial Coordinates: a.k.a.
“The Bratu-Gel’fand Problem”

1

r

d

dr

(
r
du

dr

)
+ λeu(r) = 0, u(1) = 0 and u(0) <∞

An exact solution to the Bratu-Gelfand Problem in
Cylindrical Coordinates is known. It is

u(r;λ) = ln


32

λ2

{
1− λ

4 ±
√

1− λ
2

}
(

1 +
4r2

λ

{
1− λ

4
±
√

1− λ

2

})2

 .
My work on this problem is discussed in [2, 3].

The Bratu-Gelfand Problem in Spherical Coor-
dinates is

1

r2

d

dr

(
r2du

dr

)
+λeu(r) = 0, u(1) = 0 and u(0) <∞

This problem does not have a known exact solution to
my knowledge. If you think you can solve it, or know of
an exact solution, come talk to me afterwards!
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SECTION 2:
Application of Different Differences to
PDEs
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A Problem In Plasma Physics
Wilhelmsson et al [10] consider a highly nonlinear parabolic partial

differential equation to model the plasma physics of a burning fuel

for the generation of energy by means of nuclear fusion:

∂T

∂t
=

1

10

∂2(T 5/2)

∂r2
+

1

10r

∂(T 5/2)

∂r
+ (1− r2)(aT 2− bT 1/2)

(1)

where a and b are positive parameters, and the boundary conditions

are

T (1, t) = 0, T (0, t) <∞. (2)

The variable T is the absolute temperature and therefore satisfies

the positivity condition T (r, t) ≥ 0 for 0 ≤ r ≤ 1 and t ≥ 0. The

initial condition can take many forms; a realistic analytic possibility

is

T (r, 0) = A(r + B)(r − 1)2 (3)
where A > 0 and 0 < B < 1.

It should be noted that Equation (1) has both nonlinear diffusion

and reaction terms. Further, the T 1/2 term, in the reaction function,

appears with a negative coefficient and, as a consequence, gives rise

to dissipation.
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The Simplified ODE
In order to better understand the dynamics of Equation (1), we first

study some related, simplified ordinary differential equations having

only the square root term.

dT

dt
= −λT 1/2, T (t0) = T0, (4)

where λ > 0 and T0 > 0.

The exact solution to Equation (4) is

T (t) =

 1

4

[
2T

1/2
0 − λ(t− t0)

]2
, 0 ≤ t0 ≤ t < t∗

0, t ≥ t∗.
(5)

where

t∗ =
2T

1/2
0

λ
. (6)

Of course T (t) = 0 is also a singular solution of Equation (4). See

[4] for discussion of singular solutions.

29



Discretizing the Simplified ODE Into a
O∆E
Apply the following transformations to Equation (5):

t → tk+1

t0 → tk
T0 → Tk

T (t) → Tk+1
where tk = hk, h = ∆t, and Tk = T (tk).
The exact solution, Equation (5), was:

T (t) =
1

4

[
2T

1/2
0 − λ(t− t0)

]2
By applying the above discretization we construct an exact difference scheme:

Tk+1 =
1

4

[
2T

1/2
k − λ(tk+1 − tk)

]2

=
1

4

[
2T

1/2
k − λh

]2

=
1

4

[
4Tk − 4T

1/2
k λh + λ2h2

]
= Tk − T

1/2
k λh +

λ2h2

4

Tk+1 = Tk − (λh)T
1/2
k +

λ2h2

4
,
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The resulting exact finite difference scheme for the Simplified ODE

is

Tk+1 − Tk
h

= −λT 1/2
k +

λ2h

4
. (7)

Observe that in the above expression an extra term appears on the

right-side compared to the standard forward-difference approxima-

tion of (4) which would have been

Tk+1 − Tk
h

= −λT 1/2
k . (8)
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Deriving The First NSFD Scheme
A first nonstandard finite difference scheme [6, 7, 9] can be

derived by manipulating the right-side of (4), i.e. writing it as

dT

dt
= −λT 1/2 = −λ T

T 1/2
(9)

and then discretizing this expression to give

Tk+1 − Tk
h

= −λ

Tk+1

T
1/2
k

 . (10)

Solving for Tk+1 gives

Tk+1 =

 T
1/2
k

λh + T
1/2
k

Tk. (11)

This first nonstandard finite difference scheme is denoted NSFD(1)

in the numerical experiments
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Deriving A Second NSFD Scheme
A second NSFD scheme can be constructed by use of the following

discretization

T 1/2→
(

2Tk+1

Tk+1 + Tk

)
T

1/2
k , (12)

which gives

Tk+1 − Tk
h

= −λT 1/2
k

(
2Tk+1

Tk+1 + Tk

)
. (13)

This equation is quadratic in Tk+1. Solving for the non-negative

solution gives the expression

Tk+1 − Tk
h

= −λT 1/2
k +


√
T 2
k + (λh)2Tk − Tk

h

 .

(14)
The nonstandard finite difference scheme in Equation (14) is denoted

NSFD(2) in the numerical experiments
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Some Numerical Experiments
We now have four FD schemes which can be used to obtain numerical

solutions to the IVP given in Equation (4).

(i) the exact scheme Equation (7);

Tk+1 − Tk
h

= −λT 1/2
k +

λ2h

4
(ii) the standard scheme, Equation (8);

Tk+1 − Tk
h

= −λT 1/2
k

(iii) NSFD(1), the nonstandard scheme of Equation (11);

Tk+1 =

(
T

1/2
k

λh + T
1/2
k

)
Tk

(iv) NSFD(2), the nonstandard scheme of Equation (14).

Tk+1 − Tk
h

= −λT 1/2
k +

{√
T 2
k + (λh)2Tk − Tk

h

}

In the numerical experiments, the following parameter values were

selected: t0 = 0, T0 = 1, λ = 1, and h = W/N where N = 100

and W is the maximum value of the t variable; thus W = O(1) and,

in general, was chosen to be W = 4 for our numerical simulations.

Note that for these choice of parameter values, t∗ = 2.

The results of the numerical experiments are given in Figure 2 and

Figure 3.
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Figure 2: Comparison of NSFD(1), NSFD(2), the standard scheme, and the exact scheme
for Equation (4).

35



Figure 3: Plot of the differences between the NSFD(1), NSFD(2), the standard scheme, and
the exact FD scheme
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Interpreting The Results of the Nu-
merical Experiments
Inspection of Figure 2 and Figure 3 allows the following conclusions

to be made:

(i) All four FD schemes give good numerical representations of the

actual solution to Equation (4).

(ii) The largest numerical errors occur in the NSFD(1).

(iii) The error in the NSFD(2) and standard FD schemes are essen-

tially the same except for t values near t∗ = 2.

(iv) All schemes give a numerically zero solution for t greater than

about t∗. Note that the standard scheme goes to zero (at least

computationally) at t = t∗, while NSFD(2) does so at a slightly

higher value than t∗, and NSFD(1), the worst of the three schemes,

achieves zero for its solution at a still larger value of t∗. Thus, in

terms of accuracy, the three schemes are ranked as follows: stan-

dard (most accurate), NSFD(2), and NSFD(1) (least accurate).

RECALL: our goal is to produce numerical solutions of the nonlinear

Plasma Physics problem, not this “toy problem.” However, insight

gained from solving the toy problem assists us in coming up with a

method to use to solve the Wilhemsson problem.
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The Simplified PDE
Our previous work with the Simplified ODE provides hints for how

to discretize the Simplified PDE given by

∂T

∂t
= D

∂2T

∂x2
− λT 1/2; 0 ≤ x ≤ 1, t > 0

(15)
T (x, 0) = f (x) = given, T (0, t) = T (1, t) = 0.

(16)
A standard finite difference scheme for Equation (15) is given by the

expression

T k+1
m − T km

∆t
= D

[
T km+1 − 2T km + T km−1)

(∆x)2

]
− λ(T̃ km)1/2

(17)
where T̃ km can take a variety of forms such as

(T̃ km)1/2 = (T km)1/2, (18a)

(T̃ km)1/2 =

√
T km+1 + T km + T km−1

3
, (18b)

(T̃ km)1/2 =

√
T km+1 +

√
T km +

√
T km−1

3
. (18c)

In the above discretizations, we use the notation t→ tk = k(∆t), x→ xm =
m(∆x), and T (x, t)→ T km. Thus, k and m are, respectively, the discrete time
and space variables, and T km is an approximation to T (xm, tk).
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Solving Equation (17) for T k+1
m gives

T k+1
m = DR(T km+1+T km−1)+(1−2DR)T km−(λ∆t)(T̃ km)1/2

(19)

where R =
∆t

(∆x)2
. If T km ≥ 0(k-fixed, all relevant m) then T k+1

m is

not necessarily non-negative.

T k+1
m − T km

∆t
= D

[
T km+1 − 2T km + T km−1

(∆x)2

]
− λ

[
T k+1
m

(T̃ km)1/2

]
(20)

where (T̃ km) takes one of the forms given in Equation (18) or any

such equivalent expression. Examination of this last equation shows

that it is linear in T k+1
m ; therefore solving for it gives

T k+1
m = [DR(T km+1+T km−1)+(1−2DR)T km]

[
(T̃ km)1/2

(λ∆t) + (T̃ km)1/2

]
.

(21)

Inspection of Equation (21) shows that positivity of the evolved solutions is

certain if the following condition holds:

1− 2DR ≥ 0. (22)

As in previous work [7, 9], we let

1− 2DR = γDR, γ ≥ 0, (23)

where γ is a non-negative number. This gives us, first, a relationship between
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the time and space step-sizes, i.e.

∆t =
(∆x)2

(2 + γ)D
, (24)

and allows the following representation for this NSFD scheme:

T k+1
m = DR[T km+1 + γT km + T km−1]

[
(T̃ km)1/2

(λ∆t) + (T̃ km)1/2

]
.

(25)
An Algorithm To Solve The Problem
We Want To Solve
To use this scheme, the following steps should be carried out:

(i) Select values for D, λ and ∆x.

(ii) Determine ∆t from Equation (24).

(iii) Select a set of boundary values and initial conditions.

(iv) Use the NSFD scheme of Equation (25) to calculate the numerical solu-
tions of Equation (15).

We have carried out simulations using four FD schemes. They are indicated
by the following notations:

(a) Standard: Equation (17) with T̃ km = T km.

(b) NSFD(1): Equation (25) with T̃ km given by Equation (18a).

(c) NSFD(2): Equation (25) with T̃ km given by Equation (18b).

(d) NSFD(3): Equation (25) with T̃ km given by Equation (18c).

The initial condition was selected to be

T (x, 0) = sin(πx), 0 ≤ x ≤ 1, (26)

with the boundary conditions

T (0, t) = T (1, t) = 0, t > 0. (27)
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Figure 4: Plots of the NSFD(2) scheme at various times.
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Figure 5: Plots of the NSFD(3) scheme at various times
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Figure 6: Plot of the differences between the standard scheme and the NSFD(1) scheme.
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Discussion and Conclusions
Our primary goal in studying the discretizations of the Simplified ODE and
the Simplified PDE was to gain insight that could aid us in the formulation of
improved FD schemes for more complex differential equations such as Equa-
tion (1).

We have demonstrated one possible mechanism for dealing effectively with
terms of the form T α where 0 < α < 1. The case when α < 1 presently offers
no fundamental problems within the framework of the current NSFD scheme
methodology [7, 8, 9].

The work presented here illustrates one possibility for this resolution. Clearly,
alternative methods may also exist to eliminate these issues.

The major conclusions from the calculations and constructions we

have given here are:

(i) positivity can be satisfied in FD schemes where fractional power

terms appear;

(ii) the study of rather elementary or “toy model” differential equa-

tions can provide insight into what should be done for more

complex ODEs and PDEs;

(iii) currently, no principle exists to restrict possible discretizations

for terms such as T α, 0 < α < 1.

See [1] for a more involved discussion of the details of this work.

44



References

[1] R. Buckmire, K. McMurtry and R.E. Mickens, “Numerical Studies of a
Nonlinear Heat Equation with Square Root Reaction Term,” Numeri-
cal Methods for Partial Differential Equations Volume 25 Issue 3 (May
2009), 598-609.

[2] R. Buckmire, “Application of Mickens finite differences to several related
boundary value problems,” Advances in the Applications of Nonstandard
Finite Difference Schemes Edited by R.E. Mickens, World Scientific Pub-
lishing: Singapore (2005), 47-87.

[3] R. Buckmire, “Investigations of Nonstandard, Mickens-type,’ Finite-
Difference Schemes for Singular Boundary Value Problems in Cylindrical
or Spherical Coordinates,” Numerical Methods for Partial Differential
Equations Volume 19 Issue 3 (May 2003), 380-398.

[4] W. Kaplan, Ordinary Differential Equations, Addison-Wesley, Reading,
MA (1958).

[5] R.E. Mickens and A. Smith, “Finite-difference models of ordinary dif-
ferential equations: influence of denominator functions.” Journal of the
Franklin Institute 327 (1990), 143-145.

[6] R.E. Mickens,“Difference equation models of differential equations,”
Mathl. Comput. Modelling Volume 11 (1988), 528-530.

[7] R.E. Mickens, “Nonstandard finite difference schemes for differential
equations” Journal of Difference Equations and Applications, Volume
8, Issue 9 (2002), 823-847.

[8] R.E. Mickens, Applications of Nonstandard Finite Differences, World
Scientific: Singapore (2000).

[9] R.E. Mickens, Nonstandard Difference Models of Differential Equations.
World Scientific: Singapore (1994).

[10] H. Wilhemsson, M. Benda, B. Etlicher, R. Jancel and T. Lehner, “Non-
linear evolution of densities in the presence of simultaneous diffusion and
reaction processes,” Physica Scripta Volume 38 Issue 6 (1988), 863-874.

45



Acknowledgements

Thanks to Dr. Ami Rudanskaya and the entire Mathematics
Department at Pomona College.

Special Thanks To Any Students Who Attended!

46



Questions?

47


