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The boundary value problem �u � �eu � 0 where u � 0 on the boundary is often referred to as “the Bratu
problem.” The Bratu problem with cylindrical radial operators, also known as the cylindrical Bratu-
Gelfand problem, is considered here. It is a nonlinear eigenvalue problem with two known bifurcated
solutions for � � �c, no solutions for � � �c and a unique solution when � � �c. Numerical solutions to
the Bratu-Gelfand problem at the critical value of �c � 2 are computed using nonstandard finite-difference
schemes known as Mickens finite differences. Comparison of numerical results obtained by solving the
Bratu-Gelfand problem using a Mickens discretization with results obtained using standard finite differ-
ences for � � 2 are given, which illustrate the superiority of the nonstandard scheme. © 2004 Wiley

Periodicals, Inc. Numer Methods Partial Differential Eq 20: 327–337, 2004
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1. INTRODUCTION

In this article the results of applying a nonstandard finite-difference scheme to solve the
cylindrical Bratu-Gelfand problem [1], a particular boundary value problem related to the
classical Bratu problem [2], shall be presented. The Bratu problem is a nonlinear elliptical partial
differential equation that appears in a number of applications, from the fuel ignition model found
in thermal combustion theory [3] to the Chandrasekhar model for the expansion of the universe
[4]. It is also a nonlinear eigenvalue problem that is often used as a benchmarking tool for
numerical methods ([5, 6]) due to the bifurcated nature of the solution for � � �c. In [7],
Jacobsen and Schmitt provide an excellent summary of the significance and history of the Bratu
problem. There, they consider the nature of solutions to a version of the problem generalized to
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more complicated operators in more dimensions that they call the Liouville-Bratu-Gelfand
problem:

�r���r��u���u�	� � �eu � 0, 0 � r � 1,
u � 0,

u��0	 � u�1	 � 0,
(1)

where � 	 0, � � 1 � �, � � 1 � 0. The Bratu-Gelfand problem to be considered in this article
is the special case when � � 1, � � 0, � � 1:

�
1

r
�ru�	� � �eu � 0, 0 � r � 1,

u � 0,
u��0	 � u�1	 � 0.

(2)

The assumption has been made that u � u(r) so that the other derivatives in the Laplacian can
be ignored. One way to solve boundary value problems is to discretize the derivatives using
finite-differences and then use Newton’s method to solve the resulting system of nonlinear
equations [6]. Nonstandard finite-difference schemes popularized by Professor Ronald Mickens
[8–10] are numerical methods for solving differential equations that often have reduced
(sometimes zero!) discretization errors. In previous work [11–13] I have shown the usefulness
of applying a particular Mickens-type finite-difference scheme to boundary value problems in
cylindrical coordinates that contain the expression r(du/dr). The standard forward-difference
discretization would be

r
du

dr
� rk

uk�1 
 uk

rk�1 
 rk
. (3)

However, the following nonstandard finite-difference scheme has been shown [13] to be a
superior method, especially for singular problems where r 3 0.

r
du

dr
�

uk�1 
 uk

log�rk�1	 
 log�rk	
. (4)

In section 2 of this article the exact solution of the Bratu-Gelfand problem will be presented. In
addition, the bifurcated nature of the solution shall be discussed. In section 3, the details of how
to compute numerical solutions and some comments on using nonstandard finite differences
shall be presented. Numerical solutions generated by the Mickens discretization (4) and the
standard discretization (3) will be compared to the exact solution. The article will conclude with
some overall comments and observations based on the numerical results presented in the
previous sections.

2. THE BRATU-GELFAND PROBLEM AND ITS EXACT SOLUTION

The Bratu-Gelfand problem can also be written as

u
�r	 �
1

r
u��r	 � �eu�r	 � 0 0 � r � R, with u�0	 � � and u�R	 � 0.
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The exact solution to (2) is given in [14] and is

u�r; �	 � ln�
b

�1 �
�b

8
r2�2�, (5)

where b is given by

b �
32

�2R4 �1 

�R2

4
� 	1 


�R2

2 � . (6)

Clearly there are only solutions when � � (2/R2). When R � 1 and more specifity about the
inner boundary condition is given (i.e., u�(0) � 0), Equations (5) and (6) can be combined to
write down the solution to (2) as

u�r; �	 � ln�
32

�2 �1 

�

4
� 	1 


�

2

�1 �

4r2

� �1 

�

4
� 	1 


�

2
�
2�. (7)

The above expression in (7) has two values for every value of 0 � � � 2. For example, Fig. 1
depicts the bifurcated behavior of the solution by depicting the two solutions for � � 1 in
relation to the unique solution obtained when � � 2. The solution obtained from taking the
positive square root in (7) shall be denoted as as u�(r; 1) and u�(r; 1) as the solution obtained
when taking the negative square root in (7).

FIG. 1. Exact solutions to the Bratu-Gelfand problem when � � 1 (bifurcated) and � � 2 (unique).
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The exact form of the upper curve in Fig. 1 is given by

u��r; 1	 � ln� 24 � 16	2

�1 � r2�3 � 2	2	2� (8)

and the exact form of the lower curve is given by

u��r; 1	 � ln� 24 
 16	2

�1 � r2�3 
 2	2	2�. (9)

The maximum value u� of both curves occurs at r � 0, and u�(0; 1) � ln(4) � ln(6 � 4�2) �
3.84218871 and u�(0; 1) � ln(4) � ln(6 � 4�2) � 0.31669436.

Another way to illustrate the bifurcated nature of the solution is to graph the maximum value
of u(r) on 0 � r � 1 versus �, as shown in Fig. 2. This also clearly shows the “turning point”
in the solution at the critical value of �c � 2.

The single-valued version of (7) that occurs when � � 2 is astonishingly simple:

u�r	 � ln� 4

�1 � r2	2� � ln�4	 
 2 ln�1 � r2	. (10)

The graph of this function (10) is depicted in Fig. 3. It is the exact solution to (2) and clearly
obeys the boundary conditions u(1) � 0 and u�(0) � 0. Note also that its maximum value occurs
at r � 0 and is ln(4) � 1.38629436 . . . .

FIG. 2. Maximum value of u(r) versus � depicting the turning point at � � 2.
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3. NUMERICAL METHOD

Two different methods were used to compute numerical solutions to the Bratu-Gelfand
problem (2) in order to compare them. Both methods involve forming discrete versions of
the boundary value problem by approximating the derivatives and boundary conditions and
solving the resulting system of nonlinear difference equations numerically. Exactly which
method to use to approximate differential equations using difference equations on a discrete
grid is a topic that has been extensively addressed by Ronald Mickens of Clark Atlanta
University [15, 16]. It is these methods that I refer to as “Mickens finite differences” or
“Mickens discretizations.”

3.1. A Primer on Mickens Differences

A Mickens discretization of the derivative has the general form

du

dr
�

uk�1 
 uk

 �h	
, (11)

where h is the grid separation parameter and  � h � o(h). The symbols uk and uk�1 are
the values of u(r) at consecutive locations on the discrete grid. It is the form of the
“denominator function”  (h) that determines that the discretization will be part of a
nonstandard finite difference scheme. In [17] some examples of denominator functions that
have the same desired qualities are provided and reproduced below in (12). Obviously, the
first denominator function in the list below would result in the standard forward-difference
formula for the derivative:

FIG. 3. Exact solution of the Bratu-Gelfand problem when � � 2.
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 �h	 � �
h,

sin�h	,
eh 
 1,

1 
 e�h,
sinh�h	,

ln�1 � h	,
1 
 e��h

�
,

···

(12)

In the limit as h3 0, using any of the above sample denominator function results in the familiar
forward-difference definition of the derivative. However, for finite h, which is, of course the
typical computational practice, the denominator function will produce a discrete derivative that
is an approximation to the standard derivative. The nature of the approximation to the derivative
will depend on the size of h and the nonlinearity of .

There is another way in which a discretization of a derivative can produce a nonstandard
discretization separate from the choice of denominator function. This involves using “nonlocal”
terms in discretizations. For example, in spherical coordinates the operator r2(d/dr) often
appears. The standard discretization for this would be

r2
du

dr
� rk�1/2

2
uk�1 
 uk

rk�1 
 rk
, (13)

where the r2 terms are evaluated in between grid points. However, the following finite-
difference scheme

r2
du

dr
� rkrk�1

uk�1 
 uk

rk�1 
 rk
, (14)

is an example of a Mickens discretization which has been shown to have superior numerical
behavior [13]. In (14) r2 is being discretized as not rk

2 or rk�1
2 but as a surprising hybrid, rkrk�1.

In [18] and elsewhere, Mickens provides examples of other, even more surprising nonlocal
discretizations that lead to improved (sometimes even exact) accuracy over standard discreti-
zations. The author encourages others to investigate using Mickens finite differences when
attempting to numerically solve differential equations using the finite-difference approximation
method.

3.2. Numerical Solutions of the Bratu-Gelfand Problem

The first step in the numerical solution is to discretize the domain of the problem. The grid
chosen was {rj}j�0

N on the interval 0 � r � 1, where

0 � r0 � r1 � r2 � · · · � rj � · · · � rN � 1. (15)

For a uniform grid, the grid separation parameter h is constant and h � 1/N with rk � 0 � kh
for k � 0 to N. Using the standard finite-difference scheme (3) the discrete version of the
Bratu-Gelfand problem (2) will be
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1

rj
�rj�1/2

uj�1 
 uj

rj�1 
 rj

 rj�1/2

uj 
 uj�1

rj 
 rj�1
� � �euj � 0. (16)

The nonstandard version finite-difference scheme (4) for (2) will be

1

rj
� uj�1 
 uj

log�rj�1/rj	



uj 
 uj�1

log�rj/rj�1	
� � �euj � 0. (17)

Note: For the nonstandard scheme r0 must be positive, i.e., 0 � r0 �� 1. A simple discrete
version of the inner boundary condition u�(0) � 0 is

u1 
 u0

r1 
 r0
� 0 f u1 � u0. (18)

Another, more accurate, version of the inner boundary condition is that the flux (i.e., ru� must
be zero at the “first” grid point, which when substituted into (16) leads to the following equation
at j � 0 using standard differencing:

1

r0
�r1/2

u1 
 u0

r1 
 r0
� � �eu0 � 0. (19)

Using the nonstandard difference method (17) the discrete version of the inner boundary
condition is

1

r0
� u1 
 u0

log�r1/r0	
� � �eu0 � 0. (20)

The discrete version of the outer boundary condition u(1) � 0 is

uN � 0. (21)

When 0 � � � 2 the system of nonlinear equations due to the standard discretization [(16), (19),
(21)] and the system due to the Mickens discretization [(17), (20), (21)] are each solved very
easily using Newton’s Method. Computations are conducted using the exact solution u(r; 2) (10)
as an initial guess, with a tolerance of 10�8.

The numerical errors generated by the two competing methods for � � 1 and for various
values of increasing N are given in Figs. 4 and 5. Notice the completely different quantitative
and qualitative nature of the graphs. The second graph in Fig. 5 illuminates the error behavior
of the nonstandard method by using a semilog scale. The smallest maximum error in Fig. 4 (the
N � 1000 curve) is greater than the largest maximum error in Fig. 5 (the N � 100 curve).
Clearly the solution produced by the Mickens scheme has superior accuracy over the one
generated using standard finite differences when � � 1.

At the turning point � � 2 the system of equations generated by using the standard finite
difference scheme refuses to converge. This is not unexpected because it is widely known that
numerically computing solutions at or near the turning point is difficult using standard methods.
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However, the Mickens finite-difference method has no problem generating numerical solution
at this critical value of the parameter �.

The numerical results of solving the Bratu-Gelfand problem at the critical value of � � 2 are
depicted in Fig. 6. This shows that the error is greatest at r � 0 but that the error over the entire
domain 0 � r � 1 clearly goes to zero as the number of grid points N increases.

4. CONCLUSION

Mickens differences again illustrate their superior properties to standard finite differences in the
example given here of solving the cylindrical Bratu-Gelfand problem numerically. This is true
not only at the subcritical values of the parameter � � 2 but even at the critical value of � � 2
where standard finite differences fail to produce a convergent solution. Future work will
consider the application of Mickens differences to the Bratu-Gelfand problem in spherical
coordinates. In spherical coordinates the solution has an infinite number of turning points [19]
which are quite challenging for most numerical methods to capture. In other work Mickens
differences have been applied successfully to the one-dimensional, planar Bratu problem [20].
The planar Bratu problem has a very similar structure to the cylindrical Bratu-Gelfand problem
considered here (a critical value of � beyond which solutions don’t exist and before which two
solutions exist) and again Mickens differences produce superior results. The author welcomes
correspondence with suggestions for other interesting problems to which Mickens differences
could be applied.

FIG. 4. Numerical error versus r for standard method when � � 1.
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FIG. 5. Numerical error versus r using Mickens differences when � � 1.
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The author thanks Tom Witelski for mentioning the Bratu problem to me and Don Schwen-
deman for his helpful suggestions. The numerical calculations for this article were performed
using Matlab and Mathematica and the figures were all generated using Matlab.
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