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It is well known that standard finite-difference schemes for singular boundary value problems involving the
Laplacian have difficulty capturing the singular (O(1/r) or O(log r)) behavior of the solution near the origin
(r = 0). New nonstandard finite-difference schemes that can capture this behavior exactly for certain
singular boundary value problems encountered in theoretical aerodynamics are presented here. These
schemes are special cases of nonstandard finite differences which have been extensively researched by
Professor Ronald E. Mickens of Clark Atlanta University in their most general form. Several examples of
these “Mickens-type” finite differences that illustrate both their accuracy and utility for singular boundary
value problems in both cylindrical and spherical co-ordinates are investigated. The numerical results
generated by the Mickens-type schemes are compared favorably with solutions obtained from standard
finite-difference schemes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 380-398,
2003
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1. INTRODUCTION

This article introduces finite-difference schemes for computing numerical solutions to singular
boundary value problems in spherical or cylindrical coordinates. These boundary value prob-
lems involve partial differential equations or ordinary differential equations that occur in
theoretical aerodynamics and other fields. The schemes involve novel ways to discretize the
Laplacian operator %, = r’(d/dr), where p = 1 is the cylindrical case and p = 2 is the spherical
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case. These nonstandard finite-difference schemes are special cases of the numerical methods
Professor Ronald E. Mickens of Clark Atlanta University has analyzed extensively for years
([1-3], etc.).

The scheme for the cylindrical case was initially presented in Buckmire’s 1994 thesis [4] in
which particular slender bodies of revolution were found to possess shock-free flows as specific
numerical solutions of a mixed-type, singular boundary value problem. The problem is formu-
lated using transonic small disturbance theory found in [5-7], among other sources. Cole and
Schwendeman announced the first computation of a fore-aft, symmetric, shock-free transonic
slender body in [8]. This work was expanded in [4], which led to the first computation of
shock-free, transonic, slender bodies with axisymmetry but without fore-aft symmetry. Basi-
cally, the problem involves numerically solving a boundary value problem with an elliptic-
hyperbolic partial differential equation (the Karman-Guderley equation) in cylindrical coordi-
nates, with a singular inner Neumann boundary condition at » = 0 and a non-singular outer
Dirichlet boundary condition far away from r = 0. Namely,

1
o(x, 7) = S(x)log 7+ G(x), as# — 0,[]x] =1
&(x, 7) bounded, for 7= 0, |x| > 1. 2
d(x, 7) — ﬂ(xZ-i-xW’ as (> + )" — o, (3)

In (1), (2), and (3) the variable 7 is a scaled cylindrical coordinate, K is the transonic
similarity parameter, 9 is a dipole strength, and &(x, 7) is a velocity disturbance potential. Both
S(x) and G(x) are bounded functions. The main point of sketching the boundary value problem
here is to emphasize that the function G(x), which occurs in (2) needs to be computed very
accurately, because the pressure coefficient on the body depends directly on G'(x). It is the
pressure coefficient that allows the determination of whether the body possesses a shock-free
flow. Computing it is complicated by the fact that ¢(x, 7) and S(x)log 7 are becoming singular
as 7 — 0, which is where the boundary condition must be evaluated, and the quantity G(x) we
require is the difference between these two large quantities. Thus, a numerical method was
needed to compute the solution ¢(x, 7) particularly accurately as # — 0. It was discovered that
an exact, nonstandard finite-difference scheme existed for a simpler, related boundary value
problem. This discovery was the motivation for adoption of the scheme introduced in [4] and
analyzed and discussed in more detail in [9]. Upon further analysis the author found other
nonstandard finite difference schemes that could be derived for slightly different boundary value
problems, and then extended this concept to spherical coordinates. It is these results that are
presented within.

The rest of this article shall continue by reproducing some illustrative examples of nonstand-
ard finite differences presented by Mickens in [10]. In this section it shall be made clear that
these “Mickens-type,” nonstandard finite differences are robust numerical techniques that have
surprisingly useful properties.
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In the third section, the details of the derivation of the specific Mickens-type, finite-difference
scheme introduced in [4] and detailed in [9] shall be discussed. In addition, the nonstandard
scheme for the corresponding problem in spherical coordinates is also derived here. This
involves looking at the discretization of the %, operator for p = 1 (cylindrical coordinates) and
p = 2 (spherical coordinates).

In the fourth section, the derivation of selected model boundary value problems is given,
along with their exact solutions. In cylindrical coordinates this involves Bessel’s functions and,
in spherical coordinates, hyperbolic trigonometric functions. These model problems are related
to the boundary value problem for ¢(x, 7) described in (1), (2), and (3) but are chosen because
they have known exact solutions which can be used as benchmarks for the numerical results.
The details of how the finite-difference schemes can be used to produce approximations to these
solutions are presented.

In the fifth section, the new Mickens-type schemes are applied to produce numerical
solutions of these selected singular boundary value problems. Graphs of the error between the
exact solution and the approximate solution generated from the standard scheme and the
nonstandard scheme are given which illustrate the superior accuracy of the Mickens-type
schemes.

The article ends with a conclusion and an appendix which details how the truncation error
between the standard finite-difference approximation varies from that of the Mickens-type schemes.

2. NONSTANDARD FINITE DIFFERENCES

This section will recount the idea behind nonstandard finite differences, drawing heavily upon
the work of Professor Ronald E. Mickens ([1-3, 10, 11]). Nonstandard finite differences are
numerical methods which approximate derivatives and differential equations by using non-
traditional discrete formulations. The general form of the traditional derivative can be expressed
as

du  u(t+ (b)) —u()  u(t+h) —u)
P S [ R S ®
with
U, (h) = h + O(h?). ()

This leads to a generalized form of the discretization of the derivative

du gy — uy

ar” e N) ©)

It is usually the nonlinear form of the “denominator function” ¢(h, A) which determines that this
discretization will be part of a nonstandard finite difference scheme. In [3] some examples of
denominator functions which have the desired qualities listed in (5) are provided and reproduced
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below in (7). Obviously, the first denominator function would result in the traditional derivative
found in (4).

h,
sin(h),
e —1,
by = 1-¢", (7)

1 _ e*)\h

)\ s

In the limit, using any of the above sample denominator function results in the familiar forward
definition of the derivative seen in (4). However, for finite /4, which is, of course the typical
computational practice, the denominator function will produce a discrete derivative that is close
to the typical derivative but one which can deviate interestingly from it, depending on the size
of h.

One of the most important results Mickens proves in [2] is that every ordinary differential
equation (ODE) can be represented by an exact finite-difference scheme (OAE). In other words,
if the exact solution of the ODE is denoted by u(f) and the discrete representations of the solution
are denoted by u,, then there exists a numerical scheme for which u(z,)) = u, for all 7, = kh
comprising the discrete domain on which the solution is being computed, for all grid separations
h.

Consider the standard ODE:

dy
E = — A,

which has the exact solution y(r) = y,e” ™. The standard finite-difference scheme would be to
use a forward Euler method so that the OAE would be

Yir1 — Yk

h = - Ayk'

However, Mickens points out ([3], p. 74) that the following nonstandard finite-difference
scheme

Yi+r1 = Yk
T = = T
)

is exact. The above OAE can be solved to produce a discrete version of the exact solution,
— A
Yit1 = Y€ -
He also provides less obvious examples of exact finite-difference schemes for some basic
ordinary differential equations. For example, the initial value problem
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dy
ar ¥ y(t) = yo (8)

has the exact solution y(f) = y/([1 — yo(t — ty)]. The standard finite-difference scheme would
be

S =0 9

which has the inaccurate solution y,,; = y,(1 + hy,). However, Mickens points out that the
previous finite-difference scheme can be made to be exact for (8) by choosing a “nonlocal”
discretization of the ODE. This new nonstandard scheme looks like

Yir1 = Vi
T:)’k)’kﬂ' (10)

It is easy to see that the above can be rearranged to produce y,,, = y/(1 — hy,), which is
simultaneously the solution to the OAE in (10) and the discrete form of the solution to the ODE
in (8).

Note that we have presented two different ways that a standard finite-difference scheme can
be modified to make it nonstandard. In the examples presented here the error of the nonstandard
scheme was zero. The discovery of a similar exact nonstandard discretization of the radial
derivatives of the Laplacian in cylindrical coordinates led to the scheme used in [4] and is
discussed in section 3 of this article. In honor of Professor Mickens’ extensive work on these
nonstandard finite-difference schemes the author proposes that they be referred to as “Mickens-
type” finite-difference schemes, or simply “Mickens differences.”

3. DISCRETIZING THE OPERATOR ®, = rP(d/dr)

This section shall explain the discretization of the Laplacian operator %, = r”(d/dr), where p
= 1 or p = 2. Laplace’s equation in cylindrical coordinates is given by

; (rur)r + Ugg = 0
and clearly contains the R, operator. Laplace’s equation in spherical coordinates is given by
P (rur)r + Ugyg = O

and clearly contains the R, operator. The Kdrman-Guderley equation (1) which was the subject
of [4] also contains R, the radial derivatives of the Laplacian in cylindrical coordinates.
Consider B(r) which is defined as
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r’du
dr ’

B(r) = R,u =

where u = u(r) is an unknown function (the solution) the operator QRI, acts on. The problem at
hand requires determining a numerical discretization or approximation for R ,.

The first step in the discretization of the operator is to choose a grid {rj}]/-v=0 on the interval
0 = r =1 where

0« rn<rn<rn< - -<r<---<ry=1 (11)

3.1. The Cylindrical Case

For the cylindrical case, let p = 1 and the operator becomes R, = r(d/dr). On the grid defined
in (11) one has discrete forms of the quantities of interest, such as u(r;)) = u; and

d 1t T
ar where 11, = ——5"—,

=Tt

Bisip=r

i.e., in between grid points.

There are several choices for discretizing B(r), but the standard forward-difference approx-
imation method and the new nonstandard scheme were selected and will be compared with each
other. Note that the discrete quantity B is actually defined in between grid points, not on them.

Uper — U

(€0 — I
Bj+]/2 = Fivin — (12)
Tiv1 = 1
Ujr1 — U; Ujr1 — Y

2 —
B_J('+>l/2 -

Tog(r,ey) — log(r) _ log(ry./r) (13)

The standard scheme in (12) shall be referred to as Scheme (1) and the new scheme in (13) shall
be referred to as Scheme (2). Scheme (2) can be obtained by assuming that B(r) should be
constant on each subinterval [r;, r;; ] of the grid. If one relates B(r) back to the physical fluid
mechanics problem we want to solve, it corresponds to a mass flux. The relationship between
B;. 1> and u; and u; ., solves the simple boundary value problem

ru' = B;,,;, = constant (14)
u(ry) = u; (15)
M(rj+1) = Ujiy- (16)

The solution to this is u(r) = B; ,,log r + C, which, when one applies the boundary conditions

(15) and (16) leads to the formula

Ujry — U;

10g(”_/‘+1/rj) ’

Biiip=
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Thus, Scheme (2) is a Mickens-type, nonstandard, exact finite-difference scheme for the ODE

du
rons B, where B is a known constant. (17)

3.2. The Spherical Case

In a similar fashion to the procedure outlined above, a nonstandard, exact finite-difference
scheme can be obtained for the spherical analogue to (17). The spherical version of the ODE
comes from setting R,u equal to a constant, producing

du
r? o A, where A is a known constant. (18)

Even though it does not have the same physical significance of a mass flux as it did in cylindrical
co-ordinates, we can still obtain a relationship between A, |,,, u;, and u;, | by solving (18) using
the conditions (15) and (16). The solution in this case is u(r) = —A/r + C, which when one
applies the boundary condition leads to the OAE

Uip) — U

A
Tj+1 T

This can be rearranged to produce

Uiy — U;
2 _ jt+1 j
A](‘+)1/2 =TI r . (19)

j+1 T T

This formula is a Mickens-type, exact, nonstandard finite-difference scheme for (18). The
standard finite-difference scheme for this ODE would be

Ujry — U;

2
A](‘+)1/2 =T . - (20)
Fien = 7

Notice that in the spherical Mickens-type scheme (19) it is the nonlocal discretization of r?,
which makes it nonstandard. In the cylindrical Mickens-type scheme (13) it is the presence of
nonlinear functions (logarithms) and the nonlocal discretization, which make it nonstandard.
Regardless, both schemes have zero local truncation error; they are exact. The superscripts in
(19) and (20) are used to indicate the difference between the nonstandard and standard
discretizations in spherical coordinates in a similar way the OAEs (13) and (12) in cylindrical
coordinates were differentiated from each other.

3.3. Informal Derivation of the Nonstandard Schemes

One can also derive the form of the nonstandard schemes by using a more intuitive but less
rigorous approach involving differentials. The ODE is rearranged through the use of differen-
tials, and then the differentials are approximated by finite As.
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du du  du Au
dr — dr  d(log(r)  A(log(r)"

r

B=r

This approximate version of the rearranged ODE is actually Scheme (2) (13).

Au Uy — U

= :B(-i)l/z'
A(log(r)) log(ry,) —log(r) 7

Similarly, one can derive the spherical version of Scheme (2) found in (19) by rearranging the
ODE in (18):

du du du Au Ui — U Upey — U A0
= A

drodr= N YL (L
r’ r r T I

In this section the derivation of Mickens-type, finite-difference schemes that discretize the %,
operator in cylindrical or spherical coordinates were given. The new schemes were presented
adjacent to the standard finite-difference methods for the same Laplacian operator to highlight
the unusual features of the nonstandard schemes. In the next section, both types of schemes will
be applied to particular singular boundary value problems to demonstrate the superior utility of
the Mickens-type schemes.

A=1r?

4. APPLYING THE SCHEMES

To illustrate the efficacy and accuracy of the Mickens-type schemes derived in (13) and (19),
they will be applied to a number of singular boundary value problems related to the original
problem solved in [4]. This section will present the solution of these boundary value problems
as well as the details of how the finite-difference schemes can be used to generate numerical
approximations to them.

The Karman-Guderley equation (1) and the associated boundary conditions of (2) and (3) can
be directly related to the simple boundary value problem given below

Ld ey )1
o) mmu=o, m constant 21
r = S, (22)

u(1) = G. (23)

If one linearizes and substitutes ¢(x, r) = u(r)e™ into (1), one will obtain the above singular
boundary value problem. This simple boundary value problem is used as the “model problem”

to benchmark the new finite-difference scheme instead of the problem containing the transonic
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(a) The m = 0 cylindrical solution in (24) (b) The m = 1 cylindrical solution in (25)

FIG. 1. Exact solutions for the cylindrical model problem.

small-disturbance equation (1) one is really interested in solving. The reason is that the simpler
problem has a known exact solution involving logarithms or Bessel functions, depending on the
value of m, where m is a natural number. The model problem retains the essential singular nature
of the aerodynamics problem. The exact solutions to the model boundary value problem in
cylindrical coordinates can be written as

m=0, u(r)=Slogr+G (24)

Io(rm)). 25)

m>0. u(r) =" SKyrm) + (G S5 Km) o

Note that solutions to the cylindrical model problem have the required singular behavior (log r))
as r — 0, as can be seen in Fig. 1.

4.1. The m = 0 Cylindrical Case

First consider the m = 0 model problem. The differential equation in this case is simply

1d du _p ~ 0
rdr rdr =B'(r) =0.

This has the simple solution B(r) = constant. Using the boundary condition at r = 0, B(0)
= § = B(r) = S. Thus, the discrete version of the model equation that is being solved is

Bjy1p=S. (26)

J

Using Scheme (1) (the standard forward-difference approximation),

Uip) — U Tiwr — 1
*l '/=S$Mj:uj+1 — 25 2" ! with uy = G. (27)

Booin =i, AL
j+1/2 jt+1/2 _ s
Tje1 = T w1 T 15
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This is a simple marching scheme which allows one to compute all the u;, j = 0, . .., N starting
from uy = G and “marching” down to u,.
Using Scheme (2) (the nonstandard scheme), the discrete equation to be solved is

U — U5

log(rji/ry)

Tiv1 .
S u=u, =S 10g<r-)’ with uy = G. (28)

Bj+l/2 =
J

Scheme (2) also leads to a marching scheme that solves the model equation exactly by definition.
This happens because the scheme was derived assuming that B(r) would be constant on each
subinterval. For this model equation B(r) = §, so it is the same constant, namely S on each
subinterval. So Scheme (2) is exact for this model equation where m = 0. Scheme (1) has a
significant numerical error that gets worse as the computed solution approaches the singularity
at the origin. These results are displayed graphically in the figures in Section 5.

4.2. The m # 0 Cylindrical Case

When m # 0 the model differential equation in (21) becomes
ru" + ru’ — m*r’u=0, (29)
which after the scaling s = mr can be seen to be the zeroth-order Bessel’s equation

su" + su' — s'u = 0.

Using a standard discretization, the OAE for the m # 0 form of (21) is

1 Mj+1 - Llj Mj — ujl) ,
— | r. —_— — 7. A _mu:O 30
; ( jt12 Figp = I j—12 r= ; ( )
The nonstandard discretization will be
r\lo - —mu=0. 31
T (log(rjﬂ/rj) log(rj/rjfl) i 3D

In the m # O cases one can not simply produce a marching scheme as in the m = 0 cases [(27)
and (28)], so the solutions are obtained by solving a tri-diagonal system of equations for {u; }/N:O'
Of course, exact solutions can be found for both the m = 0 and m # 0 cases. In the m # O case
the nonstandard scheme is not exact, but it can be clearly seen from the numerical results given
in Section 5 that it does a better job of approximating the exact solution than the standard
scheme does, especially near the r = 0 singularity.

4.3. Model Problem in Spherical Coordinates

The model problem in spherical coordinates is not directly motivated from the Karman-
Guderley boundary value problem as the cylindrical version is. It is simply an analogous
extrapolation from the cylindrical model problem given in (21),
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1 d du
2 P2 ) - nu=0,  nconstant (32)
| B 33
=S (33)
u(l) = G. (34)

However, in spherical coordinates the inner Neumann boundary condition (33) is not physically
significant so there are other choices which can be made for this inner boundary condition, such
as a simple Dirichlet condition. This choice would make the exact solution to the model problem
given above even simpler. The exact solution of the model spherical ODE can be found to
consist of hyperbolic sines and cosines after noticing that (32) can be rewritten (when n # 0)
as

rPu” + 2ru’ — n*r*u = 0. (35)

This looks very similar to the Bessel’s equation from the cylindrical coordinates problem (29),
but the solutions are very different. The derivatives can be grouped so that if v = ru the equation
becomes

rPu” + 2ru’ — n?r*u = (ru)” — n*(ru)

— "U” _ n2v
=0
The general solution to (35) is
sinh(nr) cosh(nr)
u(r) = C, p + G, P

The exact solutions to the model boundary value problem in spherical coordinates given in (32),
(33) and (34) can be written as

S
n=0, u(r)z—;-i—S-l—G (36)

— S cosh(nr)sinh(n) + (G + S cosh(n))sinh(nr)

n=>0, u(r) = r sinh(n)

(37)

These solutions above also exhibit singular behavior as r — 0, albeit much more strongly than
their cylindrical coordinate counterparts. The solutions in spherical coordinates have singular
behavior (O(1/r)) as r — 0. This can be seen graphically in Fig. 2.
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FIG. 2. Exact solutions for the spherical model problem.

4.4. n = 0 Spherical Case

First consider the n = 0 model problem. The differential equation in this case is simply

1d(2du

1
PE r di‘) Z?A'(}’) =0.

This has the simple solution A(#) = constant. Rewriting the Neumann boundary condition (33)
atr = 0 as A(0) = S implies A(r) = §.
The discrete version of the model equation which is being solved is

Ajip=S. (38)

Using the standard forward-difference approximation produces

W) — U Fiog —
1) _ 2 j+1 J _ _ _ j+1 J . _
Ajin = Tivn PR S>u=u— S 2 with uy = G. (39)
1~ T

Now we have a simple marching scheme similar to the one utilized in (27), which allows one
to compute all the u,j = 0, ..., N starting from u, = G and marching down to .
Using the Mickens-type scheme the discrete equation to be solved is

Uiy — U; Fig1 — F;
Al = 1T — =S u=u,—S with uy = G. (40)
Fivr = 7 Fit1l;

The nonstandard Scheme (2) leads to a marching scheme which again solves the model equation
exactly by definition. This happens because this scheme was derived assuming that A(r) would
be constant on each subinterval. For the model equation A(r) = S, so A equals the same constant,
namely S on each subinterval. Thus Scheme (2) is exact for the model equation (35) where n
= 0. The standard Scheme (1), on the other hand, has a significant numerical error that gets
worse as its computed solution approaches the singularity at the origin.
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4.5. The n # 0 Spherical Case
Using a standard discretization the OAE for the n # 0 form of (32) is

1 ( Uiy — U; U, — u;
> j+1 i 2 J i1 2. _
2\ i+ I SV, _nuj_o- (41)
¥y Fiv1 — T e
The nonstandard discretization will be
1 Ui — U ;= uj_, 5
) rjrj+17_—r/—rj,|_7 —nu/-=0. (42)
Tj Tivr = 7 Tp = Tj-

Like the m # 0 cylindrical case, the n # 0 spherical case does not produce a marching scheme
as in the m = 0 and n = 0 cases, so the solutions are obtained by solving a tri-diagonal system
of equations for {uj}j-vzo. Fortunately, exact solutions can be found for all values of m (cylindrical
cases) and n (spherical cases). In the n # 0 cases the Mickens-type scheme (42) is not exact, but
the numerical results given in section 5 will demonstrate that it does a much better job of
approximating the exact solution than the standard scheme (42) does.

5. NUMERICAL RESULTS

In this section the numerical results will be given which indicate the effectiveness of the
Mickens-type schemes in approximating the operator R, = r”(duldr). This is done by com-
paring the solutions to the cylindrical and spherical model problems generated by the numerical
schemes given in (31) and (30) and in (42) and (41) to the exact solutions given in (24) and (25)
and in (36) and (37).

Numerically one can not actually evaluate the Neumann boundary conditions (22) and (33)
at r = 0 exactly. Instead one chooses a small parameter € and evaluates the boundary condition
at r = € repeatedly with values of € that approach zero. For the results displayed in Fig. 3, €
= 0.1, 0.01, 0.001, 0.0001, and 0.00000001. It is these results which demonstrate the ability of
the nonstandard scheme to handle the singular nature of the pertinent boundary value
problems.

The new Mickens-type scheme in cylindrical coordinates (31) and spherical coordinates (42)
are exact (zero error) in the m = 0 and n = 0 cases, respectively. Thus, in these cases we only
need to compare the standard scheme to the new schemes, and we will obtain the exact error
made by the standard scheme.

For the m # 0 and n # 0 cases we need to compare the nonstandard scheme’s solution, the
standard scheme’s solution, and the exact solution to each other. In addition, because the
motivation for the scheme was the ability to evaluate the solution near » = 0, the comparison
of the numerical solutions with the exact solution at ever smaller values of e is important. Figure
3 depicts the error between the exact solution and the numerical solution that each numerical
method makes as the Neumann boundary conditions (22) and (33) are approximated at ever
smaller values of r (¢ — 0) for both the cylindrical and spherical model boundary value
problems.
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FIG. 3. Numerical error at » = € — 0 for cylindrical (m = 0 and m = 1) and spherical (n = 0 and n =
1) data.

As one can see from the graphs of the exact solutions to the m = 0 and m = 1 problems,
they are very similar. However, the two types of finite-difference schemes approximate the
solutions to these problems with wildly varying accuracy, with the Mickens-type scheme
being more successful by orders of magnitude. At r = € = 0.0001 the standard scheme
produces an error of about 102, whereas the nonstandard scheme produces an error of
about 107! In Fig. 4 the graphs show the error on a log-log scale with each curve
representing a solution computed at a different value of e. Notice in Fig. 4(b) that the
nonstandard scheme’s error actually decreases as the boundary condition is evaluated at a
more singular value closer to the origin, while the reverse is true for the standard scheme
in Fig. 4(a).

The corresponding graphs of the error made by the two competing schemes in solving the
spherical model problem are given below in Fig. 5. In Fig. 5(a) one can notice that the order
of magnitude of the error made by the standard scheme is gigantic (=10%), whereas in
Fig. 5(b) it is clear that the nonstandard scheme has only a modest error (=10""), even
when the inner boundary condition is being evaluated at the relatively small value of € =
0.0001.
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FIG. 4. Numerical error comparison as € — 0 for cylindrical solutions of (21).

All the calculations performed in this section used a uniform discrete grid with N = 101 grid
points, with a grid separation which varied depending on e. The known constants in the
boundary conditions were taken to be G = 2 and S = 5 for no particular reason.
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FIG. 5. Numerical error comparison as € — 0 for spherical solutions of (32).
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A uniform grid is a bad choice to pick when discretizing the domain if one is solving a
differential equation with a r?(d/dr) operator and the domain includes the singular point r = 0.
In [9] it was shown that the error between the standard and nonstandard schemes depends on a
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property of the grid defined as §; = (r;.; — r)/(r;; + r;). A better grid choice is to ensure that
the grid has the property that §; is small for all j. The easiest way to do that is to pick one value
of & for all j. The value can be chosen by looking at the definition of 6; and rearranging it to give
a marching scheme that chooses the appropriate grid discretization {rj}j-vzo.

T T _ 1 -9 ) B
8, = 7’%1 T, > = (1 n a}_)rjﬂ, with ry = 1.
For example, if one lets 8j = 1/N, then
1 —1/N N-—1
DT+ uN) T T N

which implies that r; = oIy, forj = 0to N, where « = (N — 1)/(N + 1) < 1. This grid choice
corresponds to an approximately exponentially stretched grid, with many points clustered near
r = 0. This analysis supports the selection of an exponentially scaled grid used by Krupp and
Murman [12] and Cole and Murman [13] to numerically solve the Karman-Guderley equation
in the early 1970s.

The standard forward-difference scheme can be used to solve singular differential equations,
but the grid must be chosen intelligently. Using the Mickens-type schemes there is flexibility
about what kind of grid to use because they are still more accurate regardless of the grid choice.

6. CONCLUSIONS

In this article, new finite-difference schemes have been introduced to solve singular boundary
value problems with differential equations in cylindrical or spherical coordinates. The given
results show that these schemes appear to tackle singular boundary value problems more
accurately and efficiently than standard finite-difference schemes. In particular, the nonstandard
schemes easily approximate the solution near the singularity at the origin where the standard
schemes generally fail. The numerical methods investigated here are interesting examples of the
type of nonstandard finite-difference schemes that have been thoroughly researched by Profes-
sor Ronald E. Mickens. Although the initial discovery of these particular Mickens-type finite
differences was motivated by a problem in theoretical aerodynamics in cylindrical coordinates,
the schemes explicated within can really be used for any problem where the Laplacian operator
in cylindrical or spherical coordinates needs to be discretized numerically. Future research will
investigate applying the ideas in this article to other diverse boundary value problems in order
to discover other useful Mickens-type, nonstandard finite-difference schemes.

APPENDIX: TRUNCATION ERRORS

Another way that one can compare two finite-difference schemes is to look at their local
truncation errors. If one assumes the grid is uniform with grid separation parameter %, and let
rp=jh,riy =G+ Dh=j+hu=u(r)and u;,, = u(r;,,) = u(r; + h), then one can perform
Taylor Expansions on the finite-difference schemes and obtain the truncation error associated
with each approximation technique.



NONSTANDARD DIFFERENCES 397

The standard finite-difference approximation of (1/r)(ru’)’ looks like

1 h\ u(r + h) — u(r) h\ u(r) —u(r — h)
g

_ 1 AV hz (zv) zu”' h4 (vz) 3u(v) @ h() 43
= ) (W) T aep \W ) 00D (4Y)

The nonstandard finite-difference approximation of (1/r)(ru’)’ is

1 u(r + h) — u(r) u(r) — u(r — h) h2 20" W u

— - (ru ) + u® 4+ — — =+ —
log(r + h) —log(r) log(r) — log(r — h)

Kt < 3u® 5u(”’) 5u’” 19u" 27u’

R S T H,
- " 27 TP i

360 ) + O(h%). (44)

The standard finite-difference approximation of (1/r2)(72u’)’ looks like

1 h\? u(r + h) — u(r) u(r) — u(r — h) 1 o
g (e,

hZ ( 4u" 31/”) h4 ( ( )6 (v) lsu(iv)
u'(/l

(iv) . - - 6
+ p + +36O . + 272 )+@(/’l) (45)

The nonstandard finite-difference approximation of (1//%)(r?u’)’ is

1 u(r + h) — u(r) u(r) — u(r — h)
r2h<r-(r+h)h—r-(r—h)-h)

1 h? ) u" h* 6u'”
(rzu’) + — B ul™® + T 360 u®™ + ——| + O(h%. (46)
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