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ON THE DESIGN OF SHOCK-FREE, TRANSONIC,
SLENDER BODIES OF REVOLUTION

by Ron Buckmire *
Mathematics Department

Occidental College
Los Angeles, CA 90041, U.S.A.

In this paper a procedure to design shock-free,
transonic, slender bodies of revolution will be de-
tailed. Using transonic small-disturbance theory,
a boundary-value problem is developed describing
flow around the body in the physical plane and
then transformed into the hodograph plane. In
the hodograph plane, spatial variables depend on
velocity components, instead of the usual depen-
dence of velocity components upon spatial vari-
ables in the physical plane. The transformed
boundary-value problem is solved numerically us-
ing finite-difference approximations and iterative
methods. Several shock-free bodies are computed,
with differing values of the transonic similarity pa-
rameter, .ft" = (1 - M£,)/<52M£,, where Mx is the
flow Mach number and 8 is the body thickness.

There are advantages to designing shock-free
bodies in the hodograph plane. There is a very
simple criterion for detecting when a shock-free
flow has been computed in the hodograph: the
jacobian of the mapping from physical plane to
hodograph plane must be negative everywhere.
A difficult Neumann-type boundary condition at
the origin of the physical plane becomes a simpler
Dirichlet boundary condition in the hodograph. In
the physical plane, the body shape is represented
by a source distribution of singularities along the
origin and the exact locations of the subsonic and
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supersonic regions of the flow are unknown a pri-
ori. This makes perturbing the shape to construct
a shock-free body difficult. In the hodograph body
shape the solution is less sensitive to changes along
the sonic line and the location of this boundary is
known precisely, which makes design in the hodo-
graph plane more desirable.

The importance of computing shock-free bod-
ies of revolution follows from the Transonic Area
Rule, which implies that flows around bod-
ies with equivalent rates of change of cross-
sectional area possess equivalent flows. Thus
computation of shock-free bodies of revolution
may be used to design other bodies which are
shock-free or have dramatically reduced drag.

Introduction
This paper describes a procedure to construct or
design slender bodies of revolution which possess
shock-free flows in the transonic domain. The
basic idea is to construct a body over which a
flow at near-sonic speeds is accelerated at the
nose and decelerated before it reaches the tail
without an intervening shock. There has been
a fair amount of previous work on shock-free
transonic flows, from the first experimental re-
sults of Pearcey'1'1 and Whitcomb and Clark,"9'
to the shock-free quasi-elliptical wing section of
Nieuwland'15' and, of course, the theoretical re-
sults of Bauer et a/.'1' 3l 3) which were confirmed
by the wind tunnel experiments of Kacprzynski
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et a/.'11' "' "' However, all these investigations in-
volved two-dimensional flows. In 1990, Cole fc
Schwendeman'10' announced the first computation
of a shock-free transonic flow in more than two
dimensions with the construction of their fore-aft-
symmetric slender body of revolution. In 1994,
Buckmire'4' extended this work with the computa-
tion of several fore-aft asymmetric shock-free bod-
ies. This paper will systematically detail an algo-
rithm which can be used to compute slender bod-
ies of revolution which possess shock-free flows.

The procedure outlined will result in a body
shape function F(x), or an equivalent source dis-
tribution function S(x), which is shock-free at a
given value of the transonic similarity parameter
K (which depends on 8 and Mm).

Mathematical formulation
In the process of designing slender bodies of

revolution which possess shock-free flows an as-
sumption of steady, inviscid, compressible, poten-
tial flow is made and the problem is formulated
using transonic small-disturbance theory as found
in the work of Cole and Cook1'1.

The exact velocity potential is expressed as
an asymptotic expansion in 5 (the body thick-
ness) and Moo (the flow Mach number) involv-
ing the disturbance potential <j>(x,f), where f =
8 Moor. Using a triple-deck asymptotic analysis, a
boundary-value problem for <j>(x, f) consisting of
an elliptic-hyperbolic partial differential equation
(the Karman-Guderley equation (1) in cylindrical
coordinates), a singular inner Neumann boundary
condition (2) at r = 0 and a non-singular outer
Dirichlet boundary condition (3) far away from
T — 0 is formulated. The mathematical descrip-
tion of the boundary-value problem is given below.

(1)

As f —» 0 and |z| < 1,

<6(z,f)-S(z)logf + G(z) + ... (2)

As(z 2 +f 2 ) 1 / 2 ->oo ,

In (1),(2) and (3) the variable f is a scaled
cylindrical coordinate, K is the transonic similar-
ity parameter, I? is a dipole strength and <t>(x,f)
is a velocity disturbance potential. These equa-
tions describe a three-dimensional flow but by us-
ing cylindrical coordinates and an axisymmetric
body only two independent variables are needed.

Complete details of the derivation of the
boundary-value problem in the physical plane are
given by Buckmire'4' but there are some points
which are important enough to describe here.

Note that the outer boundary condition (3) is
derived using asymptotic matching and far away
from the body velocity perturbations attenuate
(<j>\ + (fa —* 0) so that to a first approximation the
far-field flow can be thought of as Prandtl-Glauert
flow around a closed body, which is represented by
a dipole. The strength T> of this dipole is the sum
of two parts, T>body and "Dfiow, given by

F*(x)dx

and

/

OO rOO

/ <j>l(x,f)fdxdf.
•oo JO

(4)

(5)

Also note that the inner boundary condition (2)
results from an asymptotic matching of the inner
expansion and yields an important expression for
the source distribution,

S(x) = F(x)F'(x) = -, (6)

where A' = xF2(x) is the scaled cross-sectional
area of the body. Thus the source distribution
can be computed directly from the given body
shape and it represents the rate of change of cross-
sectional area of the body. The function G(z)
which occurs in (2) needs to be computed very
accurately, because the pressure coefficient on the
body Cpiajj, depends directly on G'(z),

CW*) = -S2{2S'(x)log(S2MooF(x))+

(z2
Dealing with the inner boundary condition (2) is

* ' complicated by the fact that <j>(x, f) and 5(z) log f
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are becoming singular as f —> 0, which is where
this boundary condition must be evaluated. A
special numerical scheme discussed in [5] was
developed to accurately compute this singular
boundary condition as f —> 0. However, even this
new numerical scheme can not overcome the fact
that solutions of the boundary-value problem for
<j> are extremely sensitive to perturbations in the
body shape (which affects 5(z)) This sensitivity
makes direct design in the physical plane diffi-
cult, so, the boundary-value problem for <f>(x,f)
is transformed to the hodograph plane. Com-
plete details of this transformation are given in
[10] compared to the brief description here.

Choosing the variables

R = y, v = ?* (8)
the transonic small-disturbance equation (1), ab-
breviated TSDE, can be re-written as a first-order
system

and (9) can be transformed to the hodograph
plane by reversing the relationship between the
spatial coordinates (x, f) and the velocity compo-
nents (w, v) to produce

2Rxv =
(10)

The Jacobian of the hodograph transformation is
given by

7_d(x,R) _
J ~ d ( ^ ) - lit/ "~"' (ii)

which, using information from (10) can be written
as

J(uMO = »# - ||. (12)

Notice that since R is non-negative by definition
in (8) J < 0 when w < 0 and that this corre-
sponds to subsonic flow, i.e. <j>x < K/(j+ 1). For
the transformation from the physical plane to the
hodograph plane to be smooth it is required that
the Jacobian J must be negative when w > 0 also.

The intransigence of the sign of the Jacobian will
be the basic condition which determines whether
a shock-free solution has been computed.

The new system (10) can be re-written as the
hodograph version of the TSDE by eliminating x
to yield

The hodograph TSDE (13) is solved for R(w, v)
like the physical TSDE (1) was to be solved for
<t>(x, f). The governing PDE is quasi-linear in both
planes but the boundary conditions in the hodo-
graph plane are easier to deal with.

The Hodograph Plane
To gain a better understanding of the hodograph
topology and the differences between the physical
boundary-value problem for <j>(x, f) and the hodo-
graph boundary-value problem for R(w, v) exam-
ine Figure 1.

The physical plane consisting of an infinite half-
plane 0 < f < co, \x\ < oo is transformed to an
infinite strip |w| < oo, v* < v < z/« in the hodo-
graph plane. Notice how the points labelled / (i.e.
infinity) get mapped to a single point. Notice also
how the body with nose N and tail T gets mapped.
Contours of f in the physical plane are represented
by a thick dashed line and a dotted line, both of
which are then shown in the hodograph as cor-
responding contours of R. Once the topology of
the transformation is understood attention must
be focussed on comprehending how the physical
boundary-value problem changes when it is trans-
formed into the hodograph.

Near-field boundary condition
The inner boundary condition on <t>(x,f) in the

physical plane as f — > 0 becomes the condition on
R — > 0 as w — > ±00 in the hodograph. Therefore
the asymptotic behavior of <j> as f — <• 0 needs to be
closely examined in order to obtain the asymptotic
behavior of R(w, v) as w — <• ±00. This behavior
of the flow close to the body with r — *• 0 is often
referred to as the "near-field behavior."

Recall that the asymptotic behavior of the dis-
turbance potential near the body (as f — >• 0) was
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Figure 1: Mapping the boundary-value problem to the hodograph plane

given by
<t>(x, f) = S(x) log f + G(x), f -> 0,

which can be differentiated to yield

where

«; + # =

(14)
which makes it clear that as R —> 0, v —<• (j +
1) 5(z) and w -* -f-oo when S'(z) < 0 but
w —»• —oo when S'(x) > 0. A typical source distri-
bution function S(x) is given in Figure 2, and it
possesses two extrema, x* < 0 and x, > 0 where
5' = 0. These values determine the width of the
hodograph strip, which is v* < v < v, where
v' = (f + l)S(x') and J/. = (7 + l)5(r.)-

The functional form of the near-field behavior
of R(w, v) approaching zero as w —> ±00 can be
obtained by inverting the relationship given in (14)
and keeping the dominant terms. This gives

R(w, v) = A(v)eBW
x(w, v) = C(v) +... (15)

C(v) = inverse function of (7 + l)5(z).

The form of the function C(v) changes depending
on which side of the hodograph strip it is evaluated
on. This is obvious by looking at Figure 2 and
recalling that C(v) is essentially the inverse of the
function plotted. It can be defined as

r(u\ -( >~
if w —> —oo and v* < v < v*
if w —* +00 and v* < v < v»

where Ciejt(v) and CVi9/»t(") are plotted in Fig-
ure 2. In order to invert the source distribution
function S(x) it is necessary to first realize that
it consists of two parts, the segment labelled AB
and the union of segments labelled NA and BT
form the second part. The part consisting of NA
and BT gets mapped to w = —oo in the hodo-
graph plane and represents the part of the body
on which the flow is subsonic, while the segment
AB gets mapped to w = +00 and represents the
part of the body on which the flow is supersonic.
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Figure 2: .Graphs of A(v), B(v) and C(i/)
showing different branches at ±00
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Far-field boundary condition
From observing (3) it can be shown that the far-

field in the physical plane (the area far away from
the body, where z2+f2 —+ oo and <j>x, <f>f —> 0) gets
mapped to the single coordinate w = — K,v = 0
in the hodograph plane. This point is often called
the free-stream singularity. As stated previously,
the far-field flow is assumed to resemble dipole
flow, since far away from the body the govern-
ing PDE becomes the Prandtl-Glauert equation
around a closed body. Substituting the expres-
sion for <t> from (3) in (8), the far-field boundary
condition in the hodograph becomes represented
implicitly by the system

2KR - 2i2

w + K =

(16)
which, for given values of (w, v) near the free-
stream singularity, can be solved numerically for
R(w,v). In addition, Vfiow can be expressed in
hodograph variables as

/

«

.0

\J\(w + K)* dwdv (17)

In Figure 1 the qualitative behavior of R(w,v)
near the free stream singularity at (—K, 0) is in-
dicated by depicting a dotted line on which R is
constant in both the physical plane and the hodo-
graph plane.

The Numerical Method
A numerical method to solve the hodograph

TSDE (13). and its associated boundary condi-
tions will be given in this section. The numer-
ical method devised by Cole & Schwendeman'10'
is modified so that it can be applied to bodies
without fore-aft symmetry. The basic idea recalls

the scheme used by Sobieczky et al.'1*'. In their
scheme, the physical plane characteristic curves in
the supersonic zone are computed from the sonic
line down to the body and then flow parameters
are altered to disentangle the characteristics in or-
der to produce a shock-free solution. In the phys-
ical plane, the criterion for a shock-free flow is
the appearance of no discontinuities in the flow.
Clearly, if the characteristic curves intersect then
this represents a discontinuity and is indicative of
a shocked flow. In the hodograph plane, the cri-
terion for a shock-free flow is that the Jacobian of
the transformation is strictly negative at all points
in the plane. The numerical method in this pa-
per, like Sobieczky's method, also involves choos-
ing values along the sonic line and computing the
solution in the hyperbolic (supersonic) region of
the flow. However, the advantages of executing
the design of the shock-free flow in the hodograph
plane is that the location of the sonic line is known
a priori, and the condition for shocklessness is sim-
pler. It is well-known that in the physical plane
numerical calculations are quite sensitive to per-
turbations of the flow parameters. Also, in the
physical plane finding the location of the bound-
ary between subsonic and supersonic zones, the
sonic line, is an implicit problem since it requires
knowing the disturbance potential which is what
you are solving for at the time.

To begin the design procedure a number of pa-
rameters must be inputted, such as the free-stream
Mach number, the dipole strength and the body
shape. This corresponds to setting the value of K,
D and F(x). From F ( x ) one can immediately ob-
tain S(x) and, more importantly, the coordinates
of its extrema, z* and z,. These values are used
to compute v* and v», which determine the width
of the hodograph strip.

The hodograph TSDE (13) is discretized using
a standard second-order finite-difference scheme
and the implicit Dirichlet condition near the free-
stream singularity at ( — K , 0) and the Dirichlet
condition of R(w,i>*) = 0 and R(w, v,) = 0 are
implemented. By choosing S ( x ) in the physical
plane, the corresponding function C(v) and B(v)
has been defined as detailed in (15). Using the
branch of B(v) which uses Cif.]t(v) the boundary
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condition for R(w, i>) as w —> —oo is approximated
by using the condition

n

-jr = Bu/t(v) for w —> -oo (18)ft

In practice, a discrete version of this condition
(18) is evaluated at a moderate negative value of
w because R approaches zero so quickly as |w|
becomes large.

The last boundary to be implemented in order
to have a complete boundary value problem for
R in the elliptical region of the hodograph (i.e.
w < 0) is along the sonic line w = 0. Note that
in the hodograph plane, it is known exactly where
the sonic bubble lies, while in the physical plane
one needs to implement Murman-Cole switching'9'
to compute the location of the sonic bubble. It
is in this choice for the sonic line data, i.e. the
value of the solution R(Q, v) where design choices
are made. One choice for the form of R(Q, v) is a
function Q(z(v)) which can be represented as

Q(z) = P(z) exp 1-z2

where
(19)

*(*) =
2v - v. - i/* and

P(z) = no + a\z + a^z + . . . , and a < 0.
The original functional form of P(z;{ai}) is in-
fluenced by the function Angkt(v) but in practice
the parameters {a<} will need to be adjusted to
produce the final version of Q(z). The elliptical
boundary value problem for R is solved numeri-
cally using a combination of successive relaxation
and Newton's method with the solution to the in-
compressible version of the equations serving as an
initial condition. To obtain the numerical solution
of the problem in the supersonic (w > 0) domain
involves implementing a simple, explicit marching
scheme, starting from the sonic line at w = 0 and
integrating the now-hyperbolic hodograph TSDE
(13) using the subsonic (w < 0) solution as an ini-
tial condition. At every step of the integration in
the hyperbolic (w > 0) region a discrete version
of the Jacobian is computed along with the solu-
tion and its sign is verified to be negative. If the

Jacobian ever becomes positive, the integration is
halted. A non-negative Jacobian means a shock-
free solution has not been found. The procedure
is then repeated: new sonic line data for R(0, v)
is chosen by alterig Q(z), the subsonic boundary-
value problem is solved, and integration into the
hyperbolic region using the new solution is exe-
cuted. If the Jacobian remains negative until w
reaches a sufficiently large value (typically, as far
out to positively as the boundary condition (18)
was applied at "to = — oo") then a shock-free nu-
merical solution is said to have been computed.

After R(w, v) has been computed numerically
in the entire discretized hodograph strip a number
of final calculations have to be made. The value of
the dipole strength of the flow must be computed,
and if necessary a fixed point iteration on P is im-
plemented, so that the computed dipole strength
is same as the input dipole strength. After this,
one uses R to find physical plane variables. In
particular, this is accomplished by integrating the
system of first-order equations given in (10). Of
particular interest are 5', G' and F' which are
used to compute Cnody(x) and F(z), the body
shape.

Algorithm
A step-by-step algorithm as first implemented

by Buckmire'4' is presented below which is equiv-
alent to the description given above.
1 Choose body function F(x)
2 Calculate S(x) and S'(x)
3 Find roots of S'(x): x" and i, and use them to

compute v* and v,
4 Discretize the hodograph strip as shown in Fig-

ure 1
5 Set near-field boundary conditions at w — ±00
6 Choose the P(z;{ai}) function to replace

boundary condition at w = +00 with given
sonic line data at w = 0

7 Assume a value for T>, the dipole strength:
Unew

8 Set far-field boundary conditions near the free
stream singularity by solving the given im-
plicit equations (3)
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Figure 3: Sonic line data used to compute the SFB-1 solution

9 Choose an initial condition for R everywhere in
the elliptic region

10 Solve the boundary value problem numerically
for R in the elliptic region

11 Use time-like marching scheme to extend so-
lution into hyperbolic region and check Jaco-
bian is negative everywhere it is computed

12 If the computed Jacobian is greater than zero
at any point, go to item 6 and iterate

13 Integrate to obtain a value for 2?nt,ro from the
numerically generated flow field

14 If |2?nt»m — ~Dnew\ greater than tolerance, go to
item 7 and iterate

15 Convert variables back into the physical plane:
compute F(x) and S(x) from numerical solu-
tion. Also G', 5', F' are all needed to com-
pute Cp^iy and plot graphs of F(x), S(x)

Numerical Results
In Figure 4 the results for the computation of SFB-
1, the first shock-free body of revolution computed
by Buckmire'*' are outputted. The sequence of
sonic line data which led to the computation of
SFB-1 is displayed in Figure 3. The equation of
the designed sonic line is given by

, , 2i/- 0.3052
M = 3.7648 •

The assumed body shape of F(x) = (1 - r2)(l +
ax) with a = -0.1456, results in z, = -0.63224
and x* = 0.84792, which corresponds to v* =
-1.7298 and v. = 2.0350.

Let 6 = 0.1 and Mx = 0.98025 which corre-
sponds to K = 4.07 and T> = 3.4376. In Figure 4
the approximate isobars and Cpl>ofy(x) are plot-
ted. It is clear that no distinct shock is present.
In other words, using design parameters and the
algorithm enumerated in this paper, a shock-free
flow has been numerically computed around SFB-
1. However, the coarse nature of the numerical
grid, especially near the points x* and x* where
there is a rapid change of pressure occurring leads
to questions of whether a very weak shock is form-
ing at these extrema which is not being captured
numerically. Cole & Malmuth'7' have previously
shown that if a shock is to develop on a transonic
body of revolution, its location will be at one of
the extrema of the source distribution function,
x* or i«. The question of how the flow changes
at off-design conditions is not fully resolved. In
Buckmire'4' there are numerical results to suggest
that the flow remains essentially shock-free at non-
design conditions. In a forthcoming paper the
question of how the flow changes around a shock-
free body at non-design speeds will be addressed.

R(0, v) = 0.023 exp 1-z2
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Figure 4: Dar.a for shock-free body number 1. SFB-1
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