Senior Colloquium: Applied Mathematics

Math 400 Fall 2020
2020 Ron Buckmire
http://zoom.us/j/3232592536T 10:15am-11:40am
http://sites.oxy.edu/ron/math/400/f20/

Class 8: Tuesday October 13

TITLE Perturbation Methods on Differential Equations, Part 2: The Poincaré-Lindstedt Method
CURRENT READING Logan, $\S 3.1 .3$ (pp. 158-159); Witelski, $\S 9.1$ (pp. 185-191).
NEXT READING Logan, $\S 3.3$ (pp. 179-191); Holmes, §2.5-2.6 (pp. 69-84); Witelski, §7.1-7.3 (pp. 147-158)

SUMMARY

This week we continue looking at regular perturbations in differential equations and stumble upon what can go wrong. We'll be introduced to a method to still produce reasonable perturbation solutions called the Poincaré-Lindstedt method.

Given the following model for a nonlinear spring-mass oscillator

$$
\begin{equation*}
m \frac{d^{2} y}{d \tau^{2}}=-k y-a y^{3}, \quad y(0)=A, \quad \frac{d y}{d \tau}(0)=0 \tag{1}
\end{equation*}
$$

we can non-dimensionalize it using the scalings

$$
\begin{equation*}
u=\frac{y}{A}, \quad t=\frac{\tau}{\sqrt{m / k}} \tag{2}
\end{equation*}
$$

to produce

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}=-u-\epsilon u^{3}, \quad u(0)=1, \quad u^{\prime}(0)=0 \text { where } \epsilon=\frac{a A^{2}}{k} \ll 1 \tag{3}
\end{equation*}
$$

The IVP in (3) is known as Duffing's Equation and has no known exact solution. If we assume a perturbation series solution of the form

$$
\begin{equation*}
u(t)=u_{0}(t)+\epsilon u_{1}(t)+\epsilon^{2} u_{2}(t)+\ldots \tag{4}
\end{equation*}
$$

then we will produce a series of differential equations (with initial conditions) of various orders in epsilon (like we have been doing for awhile)

First, look more closely at Duffing's Equation, like this:

$$
\frac{d^{2} u}{d t^{2}}+u=-\epsilon u^{3}, \quad u(0)=1, \quad u^{\prime}(0)=0
$$

QUESTION If $\epsilon \ll 1$ what does your mathematical intuition tell you the solution to Duffing's Equation should look like? Bounded? Unbounded? No idea?

EXAMPLE

Let's show what the initial value problems we get for $u_{0}(t)$ and $u_{1}(t)$ are:

The $\mathcal{O}(1)$ equation is

$$
\begin{equation*}
\frac{d^{2} u_{0}}{d t^{2}}+u_{0}=0, \quad u_{0}(0)=1, \quad u_{0}^{\prime}(0)=0 \tag{5}
\end{equation*}
$$

The $\mathcal{O}(\epsilon)$ equation is

$$
\begin{equation*}
\frac{d^{2} u_{1}}{d t^{2}}+u_{1}=-u_{0}^{3}, \quad u_{1}(0)=0, \quad u_{1}^{\prime}(0)=0 \tag{6}
\end{equation*}
$$

The solution to the leading order IVP, the $\mathcal{O}(1)$ term in (5) is

$$
\begin{equation*}
u_{0}(t)=\cos (t) \tag{7}
\end{equation*}
$$

which means that the $\mathcal{O}(\epsilon)$ equation becomes

$$
\frac{d^{2} u_{1}}{d t^{2}}+u_{1}=-\cos ^{3}(t), \quad u_{1}(0)=0, \quad u_{1}^{\prime}(0)=0
$$

But using the common trigonometric identity $\cos (3 t)=4 \cos ^{3}(t)-3 \cos (t)$ the first-order equation (6) becomes

$$
\begin{equation*}
\frac{d^{2} u_{1}}{d t^{2}}+u_{1}=-\frac{3}{4} \cos (t)-\frac{1}{4} \cos (3 t), \quad u_{1}(0)=0, \quad u_{1}^{\prime}(0)=0 \tag{8}
\end{equation*}
$$

which can be solved using the Method of Undetermined Coefficients (assume a solution of the form $A \cos (t)+B \sin (t)+C \cos (3 t)+D t \cos (t)+E t \sin (t)$ which produces the following solution (after applying the initial conditions)

$$
\begin{equation*}
u_{1}(t)=\frac{1}{32} \cos (3 t)-\frac{1}{32} \cos (t)-\frac{3}{8} t \sin (t) \tag{9}
\end{equation*}
$$

EXAMPLE

Let's confirm the result in $\sqrt{9}$ using M.O.U.C that $u_{1}(t)=\frac{1}{32} \cos (3 t)-\frac{1}{32} \cos (t)-\frac{3}{8} t \sin (t)$ are the solutions to (8).

Exercise

Confirm that the given functions in (7) and (9) are indeed the solution(s) to the IVPs in (5) and (6), respectively.

Consider a graph of $u_{0}(t)$ (in red) and $u_{0}(t)+\epsilon u_{1}(t)$ (in blue) plotted versus time for a typical value of $\epsilon=0.1$ on the interval $0 \leq t \leq \frac{1}{\epsilon^{2}}$. What do you notice?

Figure 1: Graph of u_{0} in blue and $u_{0}+\epsilon u_{1}$ over time $0 \leq t \leq 1 / \epsilon^{2}$
Therefore $\epsilon u_{1}(t)$ is NOT much less than $u_{0}(t)$ for all time. (If the solutions were informly valid what would you expect the graphs to look like?) Can you explain what happens as t gets larger and larger? Is it possible to estimate the value of t where "trouble" begins?

QUESTION Explain the significance of the Figure

The Poincaré-Lindstedt Method

In this technique the perturbation series is chosen to be

$$
\begin{equation*}
u(\tau)=u_{0}(\tau)+\epsilon u_{1}(\tau)+\epsilon^{2} u_{2}(\tau)+\ldots \tag{10}
\end{equation*}
$$

where $\tau=\omega t$ and

$$
\begin{equation*}
\omega=\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\ldots \tag{11}
\end{equation*}
$$

We can choose $\omega_{0}=1$ since it is the frequency of the solution given in (7) to the leading-order problem in Equation (6).

Using these new scalings given in (10) and (11) we can transform Duffing's Equation (3)

$$
\left.u^{\prime \prime}=-u-\epsilon u^{3}, \quad u(0)=1, \quad u^{\prime}(0)=0\right)
$$

into

$$
\begin{equation*}
\omega^{2} \frac{d^{2} u}{d \tau^{2}}=-u-\epsilon u^{3}, \quad u(0)=1 \quad u^{\prime}(0)=0 \tag{12}
\end{equation*}
$$

EXAMPLE

First let's show how we get to (12) from (3) using $\tau=\omega t$

We can can obtain the ordered equations from

$$
\omega^{2} \frac{d^{2} u}{d \tau^{2}}=-u-\epsilon u^{3}, \quad u(0)=1 \quad u^{\prime}(0)=0
$$

remebering $\omega=\omega_{0}+\epsilon \omega_{1}+\ldots$ and $u=u_{0}(\tau)+\epsilon u_{1}(\tau)+\ldots$ and $\tau=\omega t$

The $\mathcal{O}(1)$ equations are

$$
\begin{equation*}
\omega_{0}^{2} \frac{d^{2} u_{0}}{d \tau^{2}}+u_{0}=0, \quad u_{0}(0)=1, \omega_{0} \quad u_{0}^{\prime}(0)=0 \tag{13}
\end{equation*}
$$

The $\mathcal{O}(\epsilon)$ equations are

$$
\begin{equation*}
-2 \omega_{1} \omega_{0} u_{0}^{\prime \prime}+\omega_{0}^{2} \frac{d^{2} u_{1}}{d \tau^{2}}+u_{1}=-u_{0}^{3}, \quad u_{1}(0)=0, \quad \omega_{0} u_{1}^{\prime}(0)+\omega_{1} u_{0}^{\prime}(0)=0 \tag{14}
\end{equation*}
$$

The solution to $13,, \frac{d^{2} u_{0}}{d \tau^{2}}+u_{0}=0, \quad u_{0}(0)=1, \quad u_{0}^{\prime}(0)=0$, is similar to the solution from 5) which turns out to be

$$
\begin{equation*}
u_{0}(\tau)=\cos (\tau) \tag{15}
\end{equation*}
$$

which leads to the $\mathcal{O}(\epsilon)$ equation in 14 becoming

$$
\begin{equation*}
\frac{d^{2} u_{1}}{d \tau^{2}}+u_{1}=\left(2 \omega_{1}-\frac{3}{4}\right) \cos (\tau)-\frac{1}{4} \cos (3 \tau), \quad u_{1}(0)=u_{1}^{\prime}(0)=0 \tag{16}
\end{equation*}
$$

NOTE that Equation (16) is solved using the same techniques for Equation (8), with the extra term $2 \omega_{1} \cos (\tau)$ coming from $-2 \omega_{1} u_{0}^{\prime \prime}$.
In order to eliminate the $\cos (\tau)$ term on the right-hand side of we can let $2 \omega_{1}-\frac{3}{4}=0$ so $\omega_{1}=\frac{3}{8}$ which produces

$$
\frac{d^{2} u_{1}}{d \tau^{2}}+u_{1}=-\frac{1}{4} \cos (3 \tau)
$$

We can again use the Method of Undetermined Coefficients and the initial conditions to show that the solution to the above equation is

$$
\begin{equation*}
u_{1}(\tau)=\frac{1}{32}[\cos (3 \tau)-\cos (\tau)] \text { where } \tau=t+\frac{3}{8} \epsilon t+\ldots \tag{17}
\end{equation*}
$$

A first-order, uniformly-valid perturbation solution of Duffing's Equation (3) is $u_{0}(\tau)+\epsilon u_{1}(\tau)$,

$$
\begin{equation*}
u(\tau)=\cos (\tau)+\frac{1}{32} \epsilon[\cos (3 \tau)-\cos (\tau)] \text { where } \tau=t+\frac{3}{8} \epsilon t+\ldots \tag{18}
\end{equation*}
$$

A graph of (18), a 2-term perturbation solution of Duffing's Equation versus time for a typical value of $\epsilon=0.1$ on the interval $0 \leq t \leq \frac{1}{\epsilon^{2}}$ is shown below. NOW what do you notice?

Figure 2: Graph of 2-term perturbation solution to Duffings Equation using scaled time Here's a graph of the difference between $u(\tau)$ and $u_{0}(\tau)$ which equals $\epsilon u_{1}(\tau)$ on the same interval $0 \leq t \leq \frac{1}{\epsilon^{2}}$

Figure 3: Graph of $\epsilon u_{1}(t)$ versus time

QUESTION EXPLAIN the significance of the above Figures

