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SUMMARY
This week we continue looking at regular perturbations in differential equations and stumble upon
what can go wrong. We’ll be introduced to a method to still produce reasonable perturbation
solutions called the Poincaré-Lindstedt method.

Given the following model for a nonlinear spring-mass oscillator

m
d2y

dτ 2
= −ky − ay3, y(0) = A,

dy

dτ
(0) = 0 (1)

we can non-dimensionalize it using the scalings

u =
y

A
, t =

τ√
m/k

(2)

to produce

d2u

dt2
= −u− εu3, u(0) = 1, u′(0) = 0 where ε =

aA2

k
� 1 (3)

The IVP in (3) is known as Duffing’s Equation and has no known exact solution.
If we assume a perturbation series solution of the form

u(t) = u0(t) + εu1(t) + ε2u2(t) + . . . (4)

then we will produce a series of differential equations (with initial conditions) of various orders in
epsilon (like we have been doing for awhile)

First, look more closely at Duffing’s Equation, like this:

d2u

dt2
+ u = −εu3, u(0) = 1, u′(0) = 0

QUESTION If ε � 1 what does your mathematical intuition tell you the solution to Duffing’s
Equation should look like? Bounded? Unbounded? No idea?
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EXAMPLE
Let’s show what the initial value problems we get for u0(t) and u1(t) are:

The O(1) equation is
d2u0
dt2

+ u0 = 0, u0(0) = 1, u′0(0) = 0 (5)

The O(ε) equation is
d2u1
dt2

+ u1 = −u30, u1(0) = 0, u′1(0) = 0 (6)

The solution to the leading order IVP, the O(1) term in (5) is

u0(t) = cos(t) (7)

which means that the O(ε) equation becomes

d2u1
dt2

+ u1 = − cos3(t), u1(0) = 0, u′1(0) = 0

But using the common trigonometric identity cos(3t) = 4 cos3(t)−3 cos(t) the first-order equation
(6) becomes

d2u1
dt2

+ u1 = −3

4
cos(t)− 1

4
cos(3t), u1(0) = 0, u′1(0) = 0 (8)

which can be solved using the Method of Undetermined Coefficients (assume a solution of the form
A cos(t)+B sin(t)+C cos(3t)+Dt cos(t)+Et sin(t) which produces the following solution (after
applying the initial conditions)

u1(t) =
1

32
cos(3t)− 1

32
cos(t)− 3

8
t sin(t) (9)
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EXAMPLE

Let’s confirm the result in (9) using M.O.U.C that u1(t) =
1

32
cos(3t)− 1

32
cos(t)− 3

8
t sin(t) are

the solutions to (8).
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Exercise
Confirm that the given functions in (7) and (9) are indeed the solution(s) to the IVPs in (5) and (6),
respectively.

Consider a graph of u0(t) (in red) and u0(t) + εu1(t) (in blue) plotted versus time for a typical

value of ε = 0.1 on the interval 0 ≤ t ≤ 1

ε2
. What do you notice?
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Figure 1: Graph of u0 in blue and u0 + εu1 over time 0 ≤ t ≤ 1/ε2

Therefore εu1(t) is NOT much less than u0(t) for all time. (If the solutions were informly valid
what would you expect the graphs to look like?) Can you explain what happens as t gets larger
and larger? Is it possible to estimate the value of t where “trouble” begins?

QUESTION Explain the significance of the Figure

4



Applied Mathematics Week 8 Math 400 Fall 2020

The Poincaré-Lindstedt Method
In this technique the perturbation series is chosen to be

u(τ) = u0(τ) + εu1(τ) + ε2u2(τ) + . . . (10)

where τ = ωt and

ω = ω0 + εω1 + ε2ω2 + . . . (11)

We can choose ω0 = 1 since it is the frequency of the solution given in (7) to the leading-order
problem in Equation (6).

Using these new scalings given in (10) and (11) we can transform Duffing’s Equation (3)

u′′ = −u− εu3, u(0) = 1, u′(0) = 0)

into

ω2d
2u

dτ 2
= −u− εu3, u(0) = 1 u′(0) = 0 (12)

EXAMPLE
First let’s show how we get to (12) from (3) using τ = ωt
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We can can obtain the ordered equations from

ω2d
2u

dτ 2
= −u− εu3, u(0) = 1 u′(0) = 0

remebering ω = ω0 + εω1 + . . . and u = u0(τ) + εu1(τ) + . . . and τ = ωt

The O(1) equations are

ω2
0

d2u0
dτ 2

+ u0 = 0, u0(0) = 1, ω0 u′0(0) = 0 (13)

The O(ε) equations are

−2ω1ω0u
′′
0 + ω2

0

d2u1
dτ 2

+ u1 = −u30, u1(0) = 0, ω0u
′
1(0) + ω1u

′
0(0) = 0 (14)
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The solution to (13),
d2u0
dτ 2

+ u0 = 0, u0(0) = 1, u′0(0) = 0, is similar to the solution from (5)
which turns out to be

u0(τ) = cos(τ) (15)

which leads to the O(ε) equation in (14) becoming

d2u1
dτ 2

+ u1 =

(
2ω1 −

3

4

)
cos(τ)− 1

4
cos(3τ), u1(0) = u′1(0) = 0 (16)

NOTE that Equation (16) is solved using the same techniques for Equation (8), with the extra term
2ω1 cos(τ) coming from −2ω1u

′′
0.

In order to eliminate the cos(τ) term on the right-hand side of (16) we can let 2ω1 − 3
4

= 0 so

ω1 =
3

8
which produces

d2u1
dτ 2

+ u1 = −1

4
cos(3τ)

We can again use the Method of Undetermined Coefficients and the initial conditions to show that
the solution to the above equation is

u1(τ) =
1

32
[cos(3τ)− cos(τ)] where τ = t+

3

8
εt+ . . . (17)

A first-order, uniformly-valid perturbation solution of Duffing’s Equation (3) is u0(τ) + εu1(τ),

u(τ) = cos(τ) +
1

32
ε[cos(3τ)− cos(τ)] where τ = t+

3

8
εt+ . . . (18)
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A graph of (18), a 2-term perturbation solution of Duffing’s Equation versus time for a typical

value of ε = 0.1 on the interval 0 ≤ t ≤ 1

ε2
is shown below. NOW what do you notice?
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Figure 2: Graph of 2-term perturbation solution to Duffings Equation using scaled time

Here’s a graph of the difference between u(τ) and u0(τ) which equals εu1(τ) on the same interval

0 ≤ t ≤ 1

ε2
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Figure 3: Graph of εu1(t) versus time

QUESTION EXPLAIN the significance of the above Figures
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