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TITLE Perturbation Methods on Differential Equations, Part 2: The Poincaré-Lindstedt Method
CURRENT READING Logan, §3.1.3 (pp. 158-159); Witelski, §9.1 (pp. 185-191).

NEXT READING Logan, §3.3 (pp. 179-191); Holmes, §2.5-2.6 (pp. 69-84); Witelski, §7.1-7.3
(pp. 147-158)

SUMMARY

This week we continue looking at regular perturbations in differential equations and stumble upon
what can go wrong. We’ll be introduced to a method to still produce reasonable perturbation
solutions called the Poincaré-Lindstedt method.

Given the following model for a nonlinear spring-mass oscillator

d*y dy
me— y—ay’,  y0)=4, --(0)=0 (1)
we can non-dimensionalize it using the scalings
Y T
w=¥ o @)
A m/k
to produce
d? A?
d—;; = —u—e, w0)=1, u(0)=0wheree= CLT <1 3)

The IVP in (3)) is known as Duffing’s Equation and has no known exact solution.
If we assume a perturbation series solution of the form

u(t) = ug(t) + eup (t) + Eug(t) + . .. 4)

then we will produce a series of differential equations (with initial conditions) of various orders in
epsilon (like we have been doing for awhile)

First, look more closely at Duffing’s Equation, like this:

2
d“u 3

’ QUESTION ‘ If ¢ < 1 what does your mathematical intuition tell you the solution to Duffing’s
Equation should look like? Bounded? Unbounded? No idea?
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EXAMPLE

Let’s show what the initial value problems we get for u((t) and u;(¢) are:

The O(1) equation is

dQUQ ,
3 =0, u(0)=1, up(0)=0 5)
The O(€) equation is
d*u
dt; Fup = —ud, w(0)=0, u(0)=0 (6)

The solution to the leading order IVP, the O(1) term in (5)) is

ug(t) = cos(t) (7)
which means that the O(€) equation becomes

d2U1 3 ’
— T = —cos (t), wui(0)=0, wuj(0)=0
But using the common trigonometric identity cos(3t) = 4 cos?(t) — 3 cos(t) the first-order equation

(6) becomes

d2u1 3 1 /
o Tu =g cos(t) — ) cos(3t), wu1(0)=0, w;(0)=0 (8)
which can be solved using the Method of Undetermined Coefficients (assume a solution of the form
A cos(t)+ Bsin(t)+C cos(3t)+ Dt cos(t)+ Et sin(t) which produces the following solution (after
applying the initial conditions)

uy(t) = 3% cos(3t) — 3i2 cos(t) — gt sin(t) )
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EXAMPLE
1 1 3
Let’s confirm the result in (@) using M.O.U.C that u,(t) = 3 cos(3t) — 3 cos(t) — §t sin(t) are

the solutions to (8).
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Exercise

Confirm that the given functions in (7) and (9) are indeed the solution(s) to the IVPs in (5)) and (6)),
respectively.

Consider a graph of ug(t) (in red) and ug(t) + euq(t) (in blue) plotted versus time for a typical

value of ¢ = 0.1 on the interval 0 < ¢ < —- What do you notice?
€

31

I \'r"\"‘w"‘y"‘,"‘v"‘vy““,“‘v}““r“v’

—

_3}

Figure 1: Graph of v in blue and ug + €u; over time 0 < ¢ < 1/¢?

Therefore eu, (t) is NOT much less than wu(¢) for all time. (If the solutions were informly valid
what would you expect the graphs to look like?) Can you explain what happens as ¢ gets larger
and larger? Is it possible to estimate the value of ¢ where “trouble” begins?

‘ QUESTION ‘Explain the significance of the Figure
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The Poincaré-Lindstedt Method

In this technique the perturbation series is chosen to be
w(T) = uo(7) + eur (1) + Eug(r) + ... (10)
where 7 = wt and

W= wy + ews + Ewy + . .. (11)

We can choose wy = 1 since it is the frequency of the solution given in to the leading-order
problem in Equation (0)).

Using these new scalings given in (I0) and (IT) we can transform Duffing’s Equation (3)
v = —u — eud, w(0) =1, «'(0)=0)

into
2d2u 3 /
Ww'—s = —u — €u’, u(0)=1 u'(0)=0 (12)
dr?

EXAMPLE

First let’s show how we get to from (3)) using 7 = wt
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We can can obtain the ordered equations from
o d?u 3

Wi = U e uw(0)=1 4(0)=0

remebering w = wy + ewy + ... and u = up(7) + €uy(7) + ... and 7 = wt

The O(1) equations are

d2
WM =0, wup(0) =1,wy wh(0) =0 (13)
dr?
The O(¢) equations are
St + w2 T 4 = 0)=0 (0 10) =0 14
—2W1Woly +WOW+U1 =—up, wi(0) =0, wouy(0)+wiug(0) = (14)
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2

. d“u,
The solution to li -0
] dr?
which turns out to be

+up =0, up(0)=1, wugy(0) =0, is similar to the solution from H

(15)
which leads to the O(e) equation in becoming
d? 3 1
df; +u = (2w1 - Z) cos(T) — 1 cos(37), wu1(0) =wuy(0)=0 (16)

NOTE that Equation (I6) is solved using the same techniques for Equation (8)), with the extra term
2wy cos(T) coming from —2w;u.
In order to eliminate the cos(7) term on the right-hand side of we can let 2w; — % = 0 so

3
Wy = 3 which produces
d2u1
dr?

We can again use the Method of Undetermined Coefficients and the initial conditions to show that
the solution to the above equation is

+up = ~1 cos(37)

3
WhereT:t+§et—|—... 17

A first-order, uniformly-valid perturbation solution of Duffing’s Equation (3)) is uo(7) + €u(7),

u(T) = cos(T) + 3—12€[COS<37') — cos(T)] where T =t + get +... (18)
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A graph of (I8), a 2-term perturbation solution of Duffing’s Equation versus time for a typical

1
value of € = 0.1 on the interval 0 <t < - is shown below. NOW what do you notice?
€
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Figure 2: Graph of 2-term perturbation solution to Duffings Equation using scaled time
Here’s a graph of the difference between u(7) and ug(7) which equals eu; (7) on the same interval
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Figure 3: Graph of eu (t) versus time

‘ QUESTION |EXPLAIN the significance of the above Figures




