# Senior Colloquium: Applied Mathematics 

Math 400 Fall 2020
(c) 2020 Ron Buckmire
http://zoom.us/j/3232592536T 10:15am-11:40am
http://sites.oxy.edu/ron/math/400/f20/

## Class 5: Tuesday September 22

TITLE Introduction to Perturbation Methods and Asymptotic Expansions
CURRENT READING Logan, $\S 3.1 .1$ (pp. 149-152); Logan, §3.1.4 (pp. 160-165);
Witelski, §6.1-6.3 (pp. 127-137); Holmes, §2.1-2.2 (pp. 49-60);
NEXT READING Logan, §3.2.1 (pp. 170-173); Holmes, §2.1-2.2 (pp. 49-60);

## SUMMARY

This week we will be introduced into the wonderful world of perturbation methods. After a review of "big Oh" and "little Oh" and asymptotic expansions we shall begin by looking at applying these ideas to some polynomial equations when a small term is included.

## Order of Convergence of Functions

## DEFINITION: "big Oh" or $\mathcal{O}$

If we know that $\lim _{h \rightarrow 0} F(h)=L$ and $\lim _{h \rightarrow 0} G(h)=0$ and if a positive constant $K$ exists with

$$
|F(h)-L| \leq K G(h), \quad \text { for sufficiently small } h
$$

then we write $F(h)=L+\mathcal{O}(G(h))$ and say " $F(h)$ is big Oh of $G(h)$ as $h$ goes to zero."
This can also be computed using the idea that $F(h)=L+\mathcal{O}(G(h))$ if and only if

$$
\lim _{h \rightarrow 0} \frac{|F(h)-L|}{|G(h)|}=K
$$

where $K$ is some positive, finite constant.
Basically this means in a "race" between $F(h) \rightarrow L$ and $G(h) \rightarrow 0$ there would be a tie-they approach their respective limits at about the same rate.
DEFINITION: "little Oh" or $o$
$F(h)=L+o(G(h))$ if and only if

$$
\lim _{h \rightarrow 0} \frac{|F(h)-L|}{|G(h)|}=0
$$

Basically this means that in a "race" between $F(h) \rightarrow L$ and $G(h) \rightarrow 0, F$ will always win it. In other words, $F(h)$ approaches its limit of $L$ at a faster rate than $G(h)$ approaches its limit of 0 .

The function $G(h)$ is known as a gauge function and typically has a "nice" form such as a singleterm polynomial of the form $h^{p}$ where $p$ is a whole number.

This means that if $F(h)=L+o(G(h))$ as $h \rightarrow 0$ then we say that $|F(h)-L| \ll G(h)$ as $h \rightarrow 0$

## EXAMPLE

Show that the expression $\cos (h)+\frac{h^{2}}{2}$ is $1+\mathcal{O}\left(h^{4}\right)$ as $h \rightarrow 0$.

## EXERCISE

Show that $f(n)=e^{-n}=o\left(n^{-p}\right)$ for all $p>0$ as $n \rightarrow \infty$.

Show $e^{\epsilon}-1=\mathcal{O}(\epsilon)$ as $\epsilon \rightarrow 0$.

Question Discuss the usefulness of the terms $f(\epsilon)=o(1)$ and $g(\epsilon)=\mathcal{O}(1)$ as $\epsilon \rightarrow 0$. What can you say about $f$ and $g$ ?

## Taylor Expansions

Recall that if you have a function $f(x)$ which is infinitely-differentiable, you can write down the behavior of $f(x)$ near $x=0$ with a MacLaurin Series (also called a Taylor Series):

$$
f(x)=\sum_{k=0}^{\infty} f^{(k)}(0) \frac{x^{k}}{k!}
$$

If we are only interested in the behavior of the function for small values of $x$ near 0 , i.e. for $|h| \ll 1$ then we can write the expression as

$$
f(0+h)=\sum_{k=0}^{\infty} f^{(k)}(0) \frac{h^{k}}{k!}
$$

Interestingly, we can write an exact expression for the truncated form of this infinite series as

$$
f(0+h)=f(0)+f^{\prime}(0) h+f^{\prime \prime}(0) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right)
$$

Yes, this last term is the same "big oh" that we have been discussing in regards to order of convergence of a function to its limit.

Table 1.1: Some commonly used Taylor Expansions around $x=0$

$$
\begin{aligned}
f(x) & =f(0)+x f^{\prime}(0)+\frac{1}{2} x^{2} f^{\prime \prime}(0)+\frac{1}{3!} x^{3} f^{\prime \prime \prime}(0)+\cdots \\
(a+x)^{\gamma} & =a^{\gamma}+\gamma x a^{\gamma-1}+\frac{1}{2} \gamma(\gamma-1) x^{2} a^{\gamma-2}+\frac{1}{3!} \gamma(\gamma-1)(\gamma-2) x^{3} a^{\gamma-3}+\cdots \\
\frac{1}{1+x} & =1-x+x^{2}-x^{3}+\cdots \\
\frac{1}{(1+x)^{2}} & =1-2 x+3 x^{2}-4 x^{3}+\cdots \\
\sqrt{1+x} & =1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}+\cdots \\
\frac{1}{\sqrt{1+x}} & =1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+\cdots \\
e^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots \\
\sin (x) & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots \\
\cos (x) & =1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}+\cdots \\
\sin (a+x) & =\sin (a)+x \cos (a)-\frac{1}{2} x^{2} \sin (a)-\frac{1}{6} x^{3} \cos (a)+\cdots \\
\cos (a+x) & =\cos (a)-x \sin (a)-\frac{1}{2} x^{2} \cos (a)+\frac{1}{6} x^{3} \sin (a)+\cdots \\
\ln (1+x) & =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots \\
\ln (a+x) & =\ln (a)+\ln (1+x / a)=\ln (a)+\frac{x}{a}-\frac{1}{2}\left(\frac{x}{a}\right)^{2}+\frac{1}{3}\left(\frac{x}{a}\right)^{3}+\cdots \\
& =1
\end{aligned}
$$

Multiple Techniques For Computing Order of Convergence of a Function
Let's use multiple methods to show that $f(h)=A+\mathcal{O}\left(h^{\alpha}\right)=B+o\left(h^{\beta}\right)$ for $f(h)=\frac{1+h-e^{h}}{h^{2}}$

## 1. Limit Method

## 2. Bounding/Inequality Method

## 3. Truncated Taylor/Maclaurin Expansion

## Regular Perturbation Of Algebraic Equations

Consider the equation

$$
\begin{equation*}
x^{2}+2 \epsilon x-3=0 \tag{1}
\end{equation*}
$$

Considering a perturbation series of the form $x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots$ and writing down equations for each order, i.e. powers of $\epsilon$, produces

The $\mathcal{O}(1)$ equation is

$$
\begin{equation*}
x_{0}^{2}-3=0 \tag{2}
\end{equation*}
$$

The $\mathcal{O}(\epsilon)$ equation is

$$
\begin{equation*}
2 x_{0}\left(x_{1}+1\right)=0 \tag{3}
\end{equation*}
$$

The $\mathcal{O}\left(\epsilon^{2}\right)$ equation is

$$
\begin{equation*}
x_{1}^{2}+2 x_{0} x_{2}+2 x_{1}=0 \tag{4}
\end{equation*}
$$

Solving $\sqrt[2]{2}, \sqrt[3]{3}$ and 44 in order produces the solutions $x_{0}= \pm \sqrt{3}, x_{1}=-1$ and $x_{2}= \pm \frac{1}{2 \sqrt{3}}$ that corresponds to

$$
x=\sqrt{3}-\epsilon+\frac{1}{2 \sqrt{3}} \epsilon^{2}+\ldots \text { and } x=-\sqrt{3}-\epsilon-\frac{1}{2 \sqrt{3}} \epsilon^{2}+\ldots
$$

## EXAMPLE

Let's show this result

## Exercise

Show that the solutions to $x^{2}+2 \epsilon x-3=0$ are

$$
x=\sqrt{3}-\epsilon+\frac{1}{2 \sqrt{3}} \epsilon^{2}+\ldots \text { and } x=-\sqrt{3}-\epsilon-\frac{1}{2 \sqrt{3}} \epsilon^{2}+\ldots
$$

by using the quadratic formula on the equation (1) and then applying a Taylor Expansion...

