Senior Colloquium: Applied Mathematics

Math 400 Fall 2020	http://zoom.us/j/3232592536T10:15am-11:40am
© 2020 Ron Buckmire	http://sites.oxy.edu/ron/math/400/f20/

Class 4: Tuesday September 15

TITLE CURRENT READING NEXT READING *Scaling or Non-Dimensionalization, Part 2* Logan, §1.2 (pp. 30-40); Holmes, §1.5 (pp. 27-34) Logan, §3.1.1 (pp. 149-152); Holmes, §2.1-2.2 (pp. 49–60); Witelski, §6.1-6.3 (pp. 127-137)

SUMMARY

This week we will continue looking at scaling problems by examining the rather complicated (but famous) projectile problem

The Projectile Problem

Let us analyze the motion of a projectile thrust into the atmosphere from the surface of the earth vertically. It turns out the governing equation is Newton's second law of motion, F = ma which looks like

$$m\frac{d^{2}h}{dt^{2}} = -G\frac{Mm}{(h+R)^{2}}$$
(1)

Where R is the radius of the earth, M is its mass, m is the mass of the projectile, V its velocity and h its height. On the earth's surface, i.e. at h = 0 the weight of the projectile is equal to the gravitational force, so $mg = \frac{GMm}{R^2}$ or $g = \frac{GM}{R^2}$.

Thus we can use $GM = gR^2$ in Equation (1) to produce

$$\frac{d^2h}{dt^2} = -\frac{R^2g}{(h+R)^2}$$
(2)

with initial conditions

$$h(0) = 0 \quad h'(0) = V \tag{3}$$

These ODE in (2) plus the equation in (3) represents an initial value problem which is the mathematical model for this projectile problem.

The book (Logan 36-39) does a non-dimensional analysis of the variables involved

- [t] = time T
- [h] = length L
- [R] = length L
- [V] = velocity LT^{-1}

$$[g]$$
 = acceleration LT^{-2}

assuming there exists a physical law f(t, h, R, L, V, g) = 0 relating these variables,

It turns out that there are three dimensionless quantities formed from t, h, R, L, V, and g.

$$\pi_1 = \frac{h}{R}$$
 $\pi_2 = \frac{t}{R/V}$ $\pi_3 = \frac{V}{\sqrt{gR}}$

which implies that $F(\pi_1, \pi_2, \pi_3) = 0$ or $\pi_1 = F_1(\pi_2, \pi_3)$ or

$$\frac{h}{R} = F_1\left(\frac{t}{R/V}, \frac{V}{\sqrt{gR}}\right)$$

Scaling The Projectile Problem

We need to choose a characteristic time t_c and a characteristic length h_c where

$$\tilde{t} = \frac{t}{t_c}$$
 and $\tilde{h} = \frac{h}{h_c}$

Interestingly, there are three choices of pairs for t_c and h_c which are physically meaningful. Let's look at the choices and see how they change the IVP rpresenting the model given in (2) and (3). **CHOICE 1**

$$\tilde{t} = \frac{t}{R/V}, \tilde{h} = \frac{h}{R}$$
(4)

CHOICE 2

$$\tilde{t} = \frac{t}{\sqrt{R/g}}, \tilde{h} = \frac{h}{R}$$
(5)

CHOICE 3

$$\tilde{t} = \frac{t}{V/g}, \tilde{h} = \frac{h}{V^2/g}$$
(6)

Question How many other choices for h_c and t_c are there? What makes our specific three choices above "physically meaningful"??

Week 4

EXAMPLE

Let's use each of these choices to demonstrate what happens to the IVP for the projectile model. **CHOICE 1** $\tilde{t} = \frac{t}{R/V}$, $\tilde{h} = \frac{h}{R}$

The IVP becomes
$$T = \frac{R}{R/V}$$
, $n = \frac{1}{R}$

$$\epsilon \frac{d^2 \tilde{h}}{d\tilde{t}^2} = -\frac{1}{(1+\tilde{h})^2}, \qquad \tilde{h}(0) = 0, \quad \frac{d\tilde{h}}{d\tilde{t}} = 1$$
 (7)

Question What collection of variables corresponds to ϵ in Equation 7?

Applied Mathematics

CHOICE 2
$$\tilde{t} = \frac{t}{\sqrt{R/g}}, \tilde{h} = \frac{h}{R}$$

The IVP becomes
$$\frac{d^2 \tilde{h}}{d\tilde{t}^2} = -\frac{1}{(1+\tilde{h})^2}, \qquad \tilde{h}(0) = 0, \quad \frac{d\tilde{h}}{d\tilde{t}} = \sqrt{\epsilon}$$
(8)

Question What collection of variables corresponds to ϵ in Equation 8?

Applied Mathematics		Week 4		Math 400 Fall 2020
CHOICE 3 $\tilde{t} = \frac{t}{V/g}$, $\tilde{h} =$ The IVP becomes	$=rac{h}{V^2/g}$			
$\frac{d^2 \tilde{h}}{d \tilde{t}^2} = -$	_	$, \qquad \tilde{h}(0) = 0,$	$\frac{d\tilde{h}}{d\tilde{t}} = 1$	(9)

Question What collection of variables corresponds to ϵ in Equation 9?

GROUPWORK

Discuss what happens to each of the problems given in Equation 7, Equation 8 and Equation 9 when $\epsilon \ll 1$, i.e. as $\epsilon \to 0$