Senior Colloquium: Applied Mathematics

Math 400 Fall 2020
(c) 2020 Ron Buckmire
http://zoom.us/j/3232592536T 10:15am-11:40am
http://sites.oxy.edu/ron/math/400/f20/

Class 10: Tuesday October 27

TITLE Advanced Boundary Layer Theory
CURRENT READING Logan, $\S 3.3$ (pp. 179-185); Holmes, §2.5-2.6 (pp. 69-84); Witelski, §7.1-7.3 (pp. 147-158)

SUMMARY

This week we will learn how to do determine the size of a boundary layer (dominant balancing returns!) and compute boundary layer in other locations besides the leftmost boundary.

BOUNDARY LAYER SIZE

Recall the boundary value problem from Week \#9:

$$
\begin{equation*}
\epsilon \frac{d^{2} y}{d x^{2}}+(1+\epsilon) \frac{d y}{d x}+y=0, \text { where } \epsilon \ll 1 \text { and } \quad 0<x<1 \text { with } y(0)=0, \quad y(1)=1 . \tag{1}
\end{equation*}
$$

We assumed that this problem has a boundary layer because we know it is a singular perturbation problem. We assumed the boundary layer was $\mathcal{O}(\epsilon)$ and at $y=0$. Today we shall show how to make those determinations for ourselves.

LEFT OR RIGHT?

Logan (p. 188) says that for the standard BVP

$$
\epsilon y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,0<x<1, \quad y(0)=a, y(1)=b
$$

that when $p(x)>0$ the boundary layer is at the LEFT end, and when $p(x)<0$ the boundary layer is at the right.

We found the outer problem for $y_{\text {outer }}$ which is valid when ϵ is ignored, i.e. in the range where $\mathcal{O}(\epsilon)<x \leq 1$, by letting $\epsilon=0$ in Equation (1). The outer problem becomes

$$
\begin{equation*}
y_{\text {outer }}^{\prime}+y_{\text {outer }}=0, \quad y_{\text {outer }}(1)=1 \tag{2}
\end{equation*}
$$

Solving the IVP in (2) gives us the solution $y_{\text {outer }}(x)=e^{1-x}$.
However, in the boundary layer (inner problem) we have to do more work. We must re-scale the independent variable x using the following:

$$
\begin{equation*}
\xi=\frac{x}{\delta(\epsilon)} \text { and } Y(\xi)=y(x)=y(\xi \delta(\epsilon)) \tag{3}
\end{equation*}
$$

and plug in the new variables in (3) into the original equation in (1) produces

$$
\begin{equation*}
\frac{\epsilon}{\delta(\epsilon)^{2}} \frac{d^{2} Y}{d \xi^{2}}+\left(\frac{1}{\delta(\epsilon)}+\frac{\epsilon}{\delta(\epsilon)}\right) \frac{d Y}{d \xi}+Y(\xi)=0 \tag{4}
\end{equation*}
$$

(4)

There are four terms to do a dominant balancing of, $\frac{\epsilon}{\delta(\epsilon)^{2}}, \frac{1}{\delta(\epsilon)}, \frac{\epsilon}{\delta(\epsilon)}$ and 1 .
This results in $\binom{4}{2}=6$ possible balances.

EXAMPLE

Let's show that a consistent balancing is available if $\delta(\epsilon)=\epsilon$ is chosen.
CASE I: (1) 2
CASE II: (1) 3
CASE III: (1) 4

CASE IV: 2 23
CASE V: (2) ≈ 4
CASE VI: 3 20

Choosing the scaling $\delta(\epsilon)=\epsilon$ and plugging back into (4) leads to

$$
\begin{equation*}
\epsilon Y^{\prime \prime}+Y^{\prime}+\epsilon Y^{\prime}+\epsilon Y=0, \quad Y(0)=0 \tag{5}
\end{equation*}
$$

which is an ODE that can be approximated using regular perturbation, so we set $\epsilon=0$ and solve the leading order problem $Y^{\prime \prime}+Y^{\prime}=0$ with $Y(0)=0$, which has the solution $y_{\text {inner }}=A\left(1-e^{-x / \epsilon}\right)$. We then using asymptotic matching to find the value of A

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} y_{\text {outer }}(x)=\lim _{\xi \rightarrow \infty} y_{\text {inner }}(\xi)=y_{B L C} \tag{6}
\end{equation*}
$$

This give us the result $y_{B L C}=e$. To summarize, we now have

$$
\begin{aligned}
y_{\text {inner }}(x) & =e\left(1-e^{-x / \epsilon}\right), \text { when } 0 \leq x \leq \mathcal{O}(\epsilon) \\
y_{\text {outer }}(x) & =e^{1-x}, \text { when } \mathcal{O}(\epsilon)<x \leq 1
\end{aligned}
$$

Then we can write down the uniform expansion to the solution

$$
\begin{equation*}
y_{\text {uniform }}(x)=y_{\text {inner }}(x)+y_{\text {outer }}-y_{B L C} \tag{7}
\end{equation*}
$$

So

$$
y_{\text {uniform }}(x)=e^{1-x}+e\left(1-e^{-x / \epsilon}\right)-e=e^{1-x}-e^{1-x / \epsilon}
$$

BOUNDARY LAYER AT THE RIGHT END

Consider the following BVP

$$
\begin{equation*}
\epsilon^{2} \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x y=0, \text { where } 0<\epsilon \ll 1 \text { and } \quad 0<x<1 \text { with } y(0)=3, \quad y(1)=-1 \tag{8}
\end{equation*}
$$

Algorithm for Solving Boundary Layer Problems

STEP 0: Will Regular Perturbation Work?
STEP 1: Is there a boundary layer? What's the sign of the y^{\prime} term? (If >0 boundary layer is at the leftmost end, if <0 boundary layer is at rightmost end.)

STEP 2: Use dominant balancing to determine the form of $\delta(\epsilon)$ by using $\xi=\frac{x-x_{0}}{\delta}$ and $x=x_{0}+\xi \delta(\epsilon)$ where x_{0} is the location of the boundary layer in the interval $0<x<1$.

STEP 3: Is the ODE linear in y and satisfies Logan's Theorem 3.12? If yes, Use it! If not, proceed to find inner and outer problems and solve them and then use asymptotic matching to obtain a uniform expansion.

STEP 4: Check that your uniform expansion satisfies the initial conditions and ODE asymptotically (as $\epsilon \rightarrow 0$). If you know exact solution, compare it with your uniform expansion.

EXAMPLE

Let's show that $\delta(\epsilon)=\epsilon^{2}$ assuming the boundary layer is at the right end, i.e. $x_{0}=1$.

Exercise

Rescale the problem in Equation (8)

$$
\epsilon^{2} y^{\prime \prime}-y^{\prime}+x y=0, y(0)=3, y(1)=-1
$$

using $\xi=\frac{x-1}{\epsilon^{2}}$ and show that the outer and inner problems become:
OUTER PROBLEM (at $x=0$)

$$
\begin{equation*}
-y^{\prime}+x y=0, y(0)=3 \tag{9}
\end{equation*}
$$

INNER PROBLEM (at $x=1$)

$$
\begin{equation*}
Y^{\prime \prime}-Y^{\prime}+\epsilon^{2} Y+\epsilon^{4} \xi Y=0, Y(0)=-1 \tag{10}
\end{equation*}
$$

GROUPWORK

(A) Solve the inner problem (10) and outer problem (9).
(B) Use asymptotic matching for a right-end boundary layer

$$
y_{B L C}=\lim _{x \rightarrow 1^{-}} y_{\text {outer }}=\lim _{\xi \rightarrow-\infty} y_{\text {inner }}
$$

(C) Show that the uniform expansion for the solution to Equation (8) is

$$
\begin{equation*}
y_{\text {uniform }}=3 \exp \left(\frac{x^{2}}{2}\right)-(1+3 \sqrt{e}) \exp \left(\frac{x-1}{\epsilon^{2}}\right) \tag{11}
\end{equation*}
$$

and check that it satisfies boundary conditions and ODE asymptotically.

BOUNDARY LAYER AT BOTH ENDS(!)

TUTORIAL

(Adapted from Holmes, p. 81, Example 3) Consider the following BVP on $0<x<1$ with $0<\epsilon \ll 1$ which has boundary layers at each end of the interval:

$$
\epsilon^{2} y^{\prime \prime}+\epsilon x y^{\prime}-2 y=2-2 x, y(0)=2, y(1)=-1
$$

Find a composite expansion of the leading order solution. Here's a diagram of the situation from Holmes:

where y_{0} is the "outer" solution and Y_{0} is the expression in the left boundary layer and \tilde{Y}_{0} is the expression in the right boundary layer.

$$
y_{\text {uniform }}=y_{0}(x)+Y_{0}(\xi)+\tilde{Y}_{0}(\tilde{\xi})-y_{0}(0)-y_{0}(1)
$$

