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TITLE Advanced Boundary Layer Theory
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SUMMARY
This week we will learn how to do determine the size of a boundary layer (dominant balancing
returns!) and compute boundary layer in other locations besides the leftmost boundary.

BOUNDARY LAYER SIZE
Recall the boundary value problem from Week #9:
d*y dy .

6@4—(1—1—6)@4—3;:0, wheree < land 0<z < 1withy(0)=0, y(l)=1. (1)
We assumed that this problem has a boundary layer because we know it is a singular perturbation
problem. We assumed the boundary layer was O(¢) and at y = 0. Today we shall show how to
make those determinations for ourselves.
LEFT OR RIGHT?
Logan (p. 188) says that for the standard BVP

ey +p(x)y +q(x)y=0,0<z <1, y(0)=a, y(l)=>

that when p(x) > 0 the boundary layer is at the LEFT end, and when p(z) < 0 the boundary layer
is at the right.

We found the outer problem for y,,:.- Which is valid when ¢ is ignored, i.e. in the range where
O(e) < x < 1, by letting e = 0 in Equation (I). The outer problem becomes

y;uter + Youter = 0, youter(l) =1 (2)

Solving the IVP in (2) gives us the solution yyuse, () = €72,
However, in the boundary layer (inner problem) we have to do more work. We must re-scale the
independent variable x using the following:

X
§ = 30 and Y'(§) = y(z) = y(£(¢)) 3)
and plug in the new variables in (3) into the original equation in (T)) produces
e d¥Y 1 € dY
—+Y () = 4
o (7 i) YO @

OBNOBNORNC
1

There are four terms to do a dominant balancing of,

€ €
1.
52 5()" o)

4
This results in (2> = 6 possible balances.
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EXAMPLE

Let’s show that a consistent balancing is available if §(¢) = ¢ is chosen.

CASEL (1)~ (2) CASEIL (1)~ (3)

CASEIV: 2)~(3) CASE V: 2)~ (4)

Choosing the scaling 0(¢) = € and plugging back into (E[) leads to

Y +Y' +eYV' +eY =0, Y(0)=0

CASEIL (1)~ (4)

CASE VI: (3) ~ (4)

(&)

which is an ODE that can be approximated using regular perturbation, so we set € = 0 and solve the
leading order problem Y” 4+ Y’ = 0 with Y'(0) = 0, which has the solution y;,e, = A(1 — e~%/).

We then using asymptotic matching to find the value of A

li outer = li inner =
Jm Youer () = M Yinner (€) = Yo

This give us the result yp o = e. To summarize, we now have

yinner(x) = 6(1 - e—ac/e)’ when 0 < x < O(E)
youter(w) = 6171, when O(E) <zx <1

Then we can write down the uniform expansion to the solution

yuniform(x) = Yinner (.ZL’) + Youter — YBLC

So
Yuniform (1) = 17 Fe(1 — e @) —e = e!7% — eI/

(6)

(7
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BOUNDARY LAYER AT THE RIGHT END
Consider the following BVP

2y d
e2d—z—d—y+xy:0,wher60<e<<1and 0<z<lwithy(0)=3, y(1)=-1. (8
Xz X

Algorithm for Solving Boundary Layer Problems
STEP 0: Will Regular Perturbation Work?

STEP 1: Is there a boundary layer? What’s the sign of the 3/’ term?
(If > 0 boundary layer is at the leftmost end, if < 0 boundary layer is at rightmost end.)

T — X

STEP 2: Use dominant balancing to determine the form of d(¢) by using & = and

x = xo + £6(€) where z is the location of the boundary layer in the interval 0 < z < 1.
STEP 3: Is the ODE linear in y and satisfies Logan’s Theorem 3.12? If yes, Use it! If not, proceed

to find inner and outer problems and solve them and then use asymptotic matching to obtain
a uniform expansion.

STEP 4: Check that your uniform expansion satisfies the initial conditions and ODE asymptoti-
cally (as e — 0). If you know exact solution, compare it with your uniform expansion.

Let’s show that d(¢) = ¢ assuming the boundary layer is at the right end, i.e. 7o = 1.
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Exercise

Rescale the problem in Equation (8]
ey —y' +ay =0, y(0) =3, y(1) = -1

>— and show that the outer and inner problems become:
€

using £ =
OUTER PROBLEM (at z = 0)

—y +zy =0, y(0) = 3. 9)
INNER PROBLEM (at 7 = 1)

Y'Y + Y +e¢Y =0, Y(0) = —1. (10)
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| GROUPWORK |
(A) Solve the inner problem (10)) and outer problem (9).

(B) Use asymptotic matching for a right-end boundary layer

YBLC = lim Youter = lim Yinner
rz—1— £——o00

(C) Show that the uniform expansion for the solution to Equation (8) is

2

—1
Yuniform = 3 OXP (”%) — (14 3ve) exp (x . ) (1n
€

and check that it satisfies boundary conditions and ODE asymptotically.
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BOUNDARY LAYER AT BOTH ENDS(!)

(Adapted from Holmes, p. 81, Example 3) Consider the following BVP on 0 < = < 1 with
0 < € < 1 which has boundary layers at each end of the interval:

ey +exy —2y=2-2z, y(0) =2, y(1) = 1.

Find a composite expansion of the leading order solution. Here’s a diagram of the situation from
Holmes:

‘ i L] i
y~Y, : Yo(20) : !".-.JI X),
H”Il'j : ] |'J|'I : F"III: 1 | :
}W'Hu 50) 1 }W'II|-x_] ' ¥ T, :

' i >

- - | o

O(e) Ot(e)

where y, is the “outer” solution and Yj is the expression in the left boundary layer and Y, is the
expression in the right boundary layer.

Yuniform = yO(x) + Yb(g) + Yb(g) - yO(O) - y0<1)



