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Homework #7
[8 points]
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The Riemann Zeta Function and the Bernouilli Numbers
These problems will relate the Riemann Zeta Function, which is related to the Riemann Hypothe-
sis (one of the most important unsolved problems in pure mathematics), and Bernouilli numbers,
which are named after Jacob Bernouilli (1655-1705).
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The nth Bernouilli number Bn can be written in terms of ζ as

Bn = −nζ(1− n) for n ≥ 2

ζ(−n) = −Bn+1

n+ 1
for n = 1, 3, 5, . . .
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Note that all odd Bernouilli numbers afterB1 are identically zero, i.e. B3 = B5 = B7 = B2k+1 = 0
for k = 1, 2, 3, . . ..
One can compute the Bernouilli numbers directly using the formula
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x→0
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Or one can obtain Bernouilli numbers by looking closely at the coefficients of Taylor expansions
of certain functions. For example,

tan(x) =
∞∑
n=1
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2n−1, |x| < π
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1. The famous Ramanujan sum. 4 points. When Ramanujan first wrote G.H. Hardy one of the
results that amazed and perturbed the British mathematician was the following (nonsensical
result)

1 + 2 + 3 + 4 + . . . = − 1

12
(3)

We can show where this first example of a “Ramanujan sum” comes from by using the
Riemann Zeta function.

(a) 1 point. Show that LHS of (3) is clearly equal to ζ(−1) and the RHS is equal to −B2
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(b) 2 points. Use one of the formulas in (1) or (2) to compute B2.

(c) 1 point. Discuss your interpretation of the result that you have just proved given in (3).
Why (or why not) does this equation make sense?

2. Back to Basel. 4 points. We previously discussed Euler’s solution of the Basel problem, i.e.
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. Using the Riemann Zeta function we can show how he was able to also give

exact values for
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(a) 1 point. Use your previously computed value of B2 to compute ζ(2) and confirm the

exact value of
∞∑
k=1

1

k2
.

(b) 1 point. Compute ζ(4) to find an exact value of
∞∑
k=1

1

k4
. What Bernouilli number

will you need to compute in order to obtain the answer? [HINT: Use Formula (2) to
calculate this Bn.]

(c) 2 points. Obtain a general formula for computing the exact value of
∞∑
k=1
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k2n
like Euler

did which involves B2n. Use it to find the exact value of
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. You can look up the

value of the Bernouilli number you need instead of computing it this time!
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