Senior Colloquium: History of Mathematics

Math 400 Spring 2020

Homework \#5

[5 points]
ASSIGNED: Tue Feb 252020
DUE: Tue Mar 32020

Cauchy's Residue Calculus

We will look at two applications of Cauchy's Residue Calculus that assist us in computing the value of two real integrals. Recall the definition of a residue of a pole of order m of a function $f(z)$ at z_{0} is given by

$$
\boldsymbol{\operatorname { R e s }}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]\right\}
$$

1. Trigonometric Integrals We want to show that $\mathcal{I}=\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}$.
(a) 1 point. Show that if $z=e^{i \theta}=\cos \theta+i \sin \theta$ and $\sin \theta=\frac{z-1 / z}{2 i},|z|=1$ and $d z=i z d \theta$ then $\mathcal{I}=\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$ can be re-written as $\mathcal{I}=\oint_{|z|=1} \frac{2 d z}{4 z^{2}+10 i z-4}$.
(b) 2 points. Use Cauchy's Residue Theorem after finding the relevant poles and residues of $f(z)=\frac{2}{4 z^{2}+10 i z-4}$ to show that $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}$. Explain your answer and show all your work.
2. Improper Integrals We want to show that $\mathcal{J}=\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{2}$.
(a) 1 point. Show that the expression $f(z)=\frac{1}{\left(1+z^{2}\right)^{2}}$ has poles of order 2 at $z= \pm i$ with residue equal to $\mp \frac{i}{4}$.
(b) 1 point. Use Cauchy's Residue Theorem to show that $\mathcal{J}=\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{2}$. Explain your answer and show all your work.
