Senior Colloquium: History of Mathematics

Math 400 Spring 2020
2020 Ron Buckmire
Fowler 310 T 1:30pm-2:55pm
http://sites.oxy.edu/ron/math/400/20/

Homework \#4

[5 points]
ASSIGNED: Tue Feb 182020
DUE: Tue Feb 252020

1. Gaussian Quadrature. Consider the function $f(x)=1-\frac{1}{x^{2}}$ on $1 \leq x \leq 3$. Our goal is to use 2-point Gaussian Quadrature to obtain approximate values of \mathcal{I}, the area between this curve, $x=1, x=3$ and the x-axis.
(a) 1 point. Evaluate $\mathcal{I}=\int_{1}^{3} 1-\frac{1}{x^{2}} d x$ exactly.
(b) 1 point. Transform \mathcal{I} into an integral on $-1 \leq x \leq 1$ so that you can (HINT: you should come up with a formula for transforming an integral on $[a, b]$ to one on $[-1,1]$.)
(c) 1 point. Use the 2-point Gaussian Quadrature formula $f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)$ to approximate \mathcal{I}. Do you expect the answer to be exact? Why or why not?
(d) 2 points. In general, the N-point Gaussian Quadrature rule will have an error formula that looks like

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{N} c_{i} f\left(x_{i}\right)+\frac{2^{2 N+1}(N!)^{4}}{(2 N+1)[(2 N)!]^{3}} f^{2 N}(\xi)
$$

where ξ is an unknown value in $[-1,1]$ Use this formula to obtain an error bound for the approximation to \mathcal{I} you found in (c). How does this formula explain why N-point Gaussian Quadrature will evaluate certain integrals exactly?

