Senior Colloquium: History of Mathematics

Math 400 Spring 2020

Homework \#3

[8 points]

1. Let's consider another set of orthogonal polynomials, the Chebyshev Polynomials of the First Kind $T_{n}(x)$. Note that the first two polynomials $T_{0}(x)$ and $T_{1}(x)$ are identical to the first two Legendre polynomials but then the polynomials differ...

$$
\begin{align*}
& T_{0}(x)=1 \tag{1}\\
& T_{1}(x)=x \tag{2}\\
& T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x) \tag{3}
\end{align*}
$$

(a) 1 point. Find $T_{2}(x)$ and $T_{3}(x)$.
(b) 2 points. The Chebyshev differential equation for $T_{n}(x)$ is

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+n^{2} y=0
$$

Show that T_{0}, T_{1}, T_{2} and T_{3} satisfy this ODE.
(c) 2 points. The Chebyshev polynomials of the first kind satisfy the property that $T_{n}(\cos x)=\cos (n x)$. Use this definition (and trigonometric identities) to verify the recursion formula $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$
(d) 3 points. Like the Legendre polynomials, the Chebyshev polynomials of the first kind are also orthogonal on L^{2} over $[-1,1]$ but this time the weight function is $\left(1-x^{2}\right)^{-1 / 2}$. Show that

$$
\int_{-1}^{1} T_{n}(x) T_{m}(x) \frac{1}{\sqrt{1-x^{2}}} d x= \begin{cases}0, & \text { if } m \neq n \\ \frac{\pi}{2}, & \text { if } m=n \neq 0 \\ \pi, & \text { if } m=n=0\end{cases}
$$

(HINT: use a trigonometric substitution to simplify the integral and $T_{k}(x) \ldots$...)

