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One striking feature of nineteenth century mathematics, as contrasted with that of previous eras,

is the higher degree of rigor and precision demanded by its practitioners. This tendency was especially

noticeable in analysis, a field of mathematics that essentially began with the “invention” of calculus by

Leibniz and Newton in the mid-17th century. Unlike the calculus studied in an undergraduate course

today, however, the calculus of Newton, Leibniz and their immediate followers focused entirely on the

study of geometric curves, using algebra (or ‘analysis’) as an aid in their work. This situation changed

dramatically in the 18th century when the focus of calculus shifted instead to the study of functions,

a change due largely to the influence of the Swiss mathematician and physicist Leonhard Euler (1707–

1783). In the hands of Euler and his contemporaries, functions became a powerful problem solving and

modelling tool in physics, astronomy, and related mathematical fields such as differential equations

and the calculus of variations. Why then, after nearly 200 years of success in the development and

application of calculus techniques, did 19th-century mathematicians feel the need to bring a more

critical perspective to the study of calculus? This project explores this question through selected

excerpts from the writings of the 19th century mathematicians who led the initiative to raise the level

of rigor in the field of analysis.

1 The Problem with Analysis: Bolzano, Cauchy and Dedekind

To begin to get a feel for what mathematicians felt was wrong with the state of analysis at the

start of the 19th century, we will read excerpts from three well-known analysts of the time: Bernard

Bolzano (1781–1848), Augustin-Louis Cauchy (1789–1857) and Richard Dedekind (1831–1916). In

these excerpts, these mathematicians expressed their concerns about the relation of calculus (analysis)

to geometry, and also about the state of calculus (analysis) in general. As you read what they each

had to say, consider how their concerns seem to be the same or different. The project questions that

follow these excerpts will then ask you about these comparisons, and also direct your attention towards

certain specific aspects of the excerpts.1
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Bernard Bolzano, 1817, Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey

Werthen, die ein entgegengesetzes Resultat gewähren, wenigstens eine reele Wurzel

der Gleichung liege (Purely analytic proof of the theorem that between any two values

which give results of opposite sign there lies at least one real root of the equation)2

There are two propositions in the theory of equations of which it could still be said, until

recently, that a completely correct proof was unknown. One is the proposition: that between

any two values of the unknown quantity which give results of opposite signs there must always

lie at least one real root of the equation. The other is: that every algebraic rational integral

function of one variable quantity can be divided into real factors of first or second degree. After

several unsuccessful attempts by d’Alembert, Euler, de Foncenex, Lagrange, Laplace, Klügel,

and others at proving the latter proposition Gauss finally supplied, last year, two proofs which

leave very little to be desired. Indeed, this outstanding scholar had already presented us with a

proof of this proposition in 1799, but it had, as he admitted, the defect that it proved a purely

analytic truth on the basis of a geometrical consideration. But his two most recent proofs are

quite free of this defect; the trigonometric functions which occur in them can, and must, be

understood in a purely analytic sense.

The other proposition mentioned above is not one which so far has concerned scholars to any

great extent. Nevertheless, we do find mathematicians of great repute concerned with the

proposition, and already different kinds of proof have been attempted. To be convinced of this

one need only compare the various treatments of the proposition which have been given by, for

example, Kästner, Clairaut, Lacroix, Metternich, Klügel, Lagrange, Rösling, and several others.

However, a more careful examination very soon shows that none of these proofs can be viewed

as adequate. The most common kind of proof depends on a truth borrowed from geometry,

namely, that every continuous line of simple curvature of which the ordinates are first positive

and then negative (or conversely) must necessarily intersect the x-axis somewhere at a point

that lies in between those ordinates. There is certainly no questions concerning the correctness,

nor the indeed the obviousness, of this geometrical proposition. But it is clear that it is an

intolerable offense against correct method to derive truths of pure (or general) mathematics

(i.e., arithmetic3, algebra, analysis) from considerations which belong to a merely applied (or

special) part, namely, geometry. [. . . ]

2The translation of Bolzano’s paper used in this project is taken from [8].
3As was not uncommon in the nineteenth century, Bolzano’s use of the word ‘arithmetic’ here referred to the mathe-

matical discipline that is today called ‘number theory.’
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Augustin Cauchy, 1821, Cours d’Analyse (Course on Analysis)4

As for the methods [in this text], I have sought to give them all the rigour that is demanded

in geometry, in such a way as never to refer to reasons drawn from the generality of algebra.

. . . . . . One should also note that [reasons drawn from the generality of algebra] tend to cause an

indefinite validity to be attributed to the algebraic formulae, even though, in reality, the majority

of these formulae hold only under certain conditions, and for certain values of the variables

which they contain. By determining these conditions and values, and by fixing precisely the

meaning of the notations of which I make use, I remove any uncertainty; . . .

Augustin Cauchy, 1823, Résumé des leçons sur le calcul infinitésimal (Summary of lessons on

the infinitesimal calculus)

My principal aim has been to reconcile rigor, which I took as a law in my Cours d’Analyse,

with the simplicity that results from the direct consideration of infinitesimals. For this reason, I

believed I should reject the expansion of functions by infinite series whenever the series obtained

was divergent; and I found myself forced to defer Taylor’s formula until the integral calculus,

[since] this formula can not be accepted as general except when the series it represents is

reduced to a finite number of terms, and completed with [a remainder given by] a definite

integral. I am aware that [Lagrange] used the formula in question as the basis of his theory of

derivative functions. However, despite the respect commanded by such a high authority, most

geometers5 now recognize the uncertainty of results to which one can be led by the use of

divergent series; and we add further that, in some cases, Taylor’s theorem seems to furnish the

expansion of a function by a convergent series, even though the sum of that series is essentially

different from the given function.

4The English translation of the two Cauchy excerpts used in this project are due to the project author.
5The meaning of the word ‘geometer’ also changed over time; in Cauchy’s time, this word referred to any mathemati-

cian (and not just someone who worked in geometry.)
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Richard Dedekind, 1872, Stetigkeit und irrationale Zahlen (Continuity of irrational numbers)6

My attention was first directed toward the considerations which form the subject of this pam-

phlet in the autumn of 1858. As professor in the Polytechnic School in Zürich I found myself

for the first time obliged to lecture upon the elements of the differential calculus and felt more

keenly than ever before the lack of a really scientific foundation for arithmetic7. In discussing

the notion of the approach of a variable magnitude to a fixed limiting value, and especially in

proving the theorem that every magnitude which grows continually but not beyond all limits,

must certainly approach a limiting value, I had recourse to geometric evidences. Even now

such resort to geometric intuition in a first presentation of the differential calculus, I regard

as exceedingly useful, from the didactic standpoint, and indeed indispensable, if one does not

wish to lose too much time. But that this form of introduction into the differential calculus

can make no claim to being scientific, no one will deny. For myself this feeling of dissatis-

faction was so overpowering that I made the fixed resolve to keep meditating on the question

until I should find a purely arithmetic and perfectly rigorous foundation for the principles of

infinitesimal analysis.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Question 1

In what way do the concerns of these three mathematicians about the relation of calculus (analysis)

to geometry, and about the state of calculus (analysis) in general, seem to be the same/different?

6The translation of Dedekind’s text used in this project is taken from [7].
7Unlike Bolzano’s use of the word ‘arithmetic’ to mean ‘number theory’, Dedekind’s use of the expression ‘scientific

foundation for arithmetic’ was related to the set of real numbers and its underlying structure.
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Question 2

This question looks at some of the mathematical results mentioned by Bolzano, Cauchy and Dedekind.

(a) Note that:

• Bolzano discussed two specific theorems — identify or write these theorems here:

• Dedekind discussed one specific theorem — identify or write that theorem here:

• Cauchy made reference to the Taylor formula and related results — look back to see what

he has to say, and briefly describe his concerns.

(b) Which of the results in part (a) are familiar to you?

For each that is, try to state it in “modern” terms, or give its “modern name”.

(c) Which of the results in part (a), if any, do you believe to be true (and why)?
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2 Niels Abel: Hold your laughter, friends!

In this section, we will examine an excerpt from a letter written by young Norwegian mathematician

Niels Abel (1802–1829) to his high school teacher, Bernt Michael Holmboe, on January 26, 1826. Abel

is often remembered for his celebrated impossibility proof in the theory of equations in which he proved

that a ‘quintic formula’ for the general fifth degree polynomial equation does not exist — a proof that

marked an important step in the mathematical quest for algebraic solutions to polynomial equations

which began with the development of Babylonian procedures for solving quadratic equations in 1700

BCE. Abel is equally well known for his work in analysis, and especially the theory of elliptic functions.

In his letter to Holmboe, written during a study-abroad trip to Paris and Berlin, Abel described some

of his concerns about the state of analysis in general, and particularly about the use of infinite series.

The letter itself (in English translation) appears on pages 8 – 9 of this project; after reading

it, complete your responses to questions 3 – 6 below.

Question 3

Find at least two references in Abel’s letter to infinite series as an important concept or issue in

mathematics.

To what degree do the concerns that Cauchy expressed about series agree with Abel’s view of series?
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Question 4

What was it that Abel thought was “exceedingly surprising” about the “current” state of mathematics?

Be specific here!

Do you agree with his reaction to this state of affairs? Explain.

Question 5

Towards the end of this excerpt, Abel remarked that a series of the following form can be convergent

for ‘x less than 1’, but divergent for x = 1:

ϕ(x) = a0 + a1x+ a2x
2 + . . .

(a) Provide an example in which this occurs, specifying both the series (by giving values for the

coefficients a0, a1, . . .) and the function ϕ(x) to which that series converges for ‘x less than 1’.

(Note: You don’t really need to work too hard to do this.)

(b) Notice that Abel went on to speculate that an even worse situation might occur. Namely, he

proposed the possibility that a series ϕ(x) = a0 + a1x + a2x
2 + . . . might be convergent for ‘x

less than 1’ and convergent for x = 1 , but in such a way that lim
x→1

ϕ(x) is not equal to ϕ(1).

What mathematical concept is involved here? That is, if such a function ϕ does in fact exist,

what function property is ϕ lacking?
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Question 6

Consider the following series discussed by Abel at the end of this extract:

x

2
= sinx− 1

2
sin 2x+

1

3
sin 3x− etc.

(a) Describe how this series is different from a power series.

(b) Now complete Abel’s arguments concerning the numerical aspects of this series by determining

what is absurd about this formula for x = π.

(c) Next complete Abel’s comments about the differential aspects of this series by differentiating

the formula term-by-term in order to show what can go wrong when one “applies all operations

to infinite series as if they were finite”. [Be sure to say what is wrong with the differentiation results!]
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Heinrik Abel, 1826, Letter to Holmboe8

Another problem with which I have occupied myself a lot is the summation of the series

cosmx+m cos(m− 2)x+
m(m− 1)

2
cos(m− 4)x+ . . .

When m is a positive integer, the sum of this series as you know, is (2 cosx)m, but when m is

not an integer, this is no longer the case, except when x is less than π/2.

There is no other problem which has occupied mathematicians in recent times as much as this

one. Poisson, Poinsot, Plana, Crelle and a large number of others have tried to solve it, and

Poinsot is the first to have found the correct sum, but his reasoning is totally false. To this time

no one has been able to get to the end with this [problem]. I am happy that I quite rigorously

have arrived at this [end]. A memoir about this will appear in the Journal, and another I will

soon send to France to appear in Gergonne’s Annales de Mathematiques.

[There follows a discussion, omitted here, of some results concerning the above series

which Abel has found.]

Divergent series are on the whole devilish, and it is a shame that one dares to base any

demonstration on them. One can obtain whatever one wants, when one uses them. It is they

which have created so much disaster and so many paradoxes. Can one imagine anything more

appalling than to say

0 = 1− 2n + 3n − 4n + etc.

where n is a positive integer? Risum teneatis amici!9

I have in general got my eyes opened in a most astonishing manner: Because when one excludes

the most simple cases, for ex. the geometric series, then in the whole of mathematics there

is almost no infinite series whose sum is determined in a strict way. In other words, the most

important part of mathematics stands there without foundation. Most of it is correct, that is

true, which is exceedingly surprising. I am working hard to search for the reason behind this.

A very interesting task. I do not think you will be able to propose to me many theorems in

which there are infinite series, against whose proof I shall not provide reasoned objections. Do

it, and I will answer you.

[There follows a discussion, omitted here, about the Binomial Series, about which

Abel had derived certain results.]

8The English translation of Abel’s letter used in this project is taken from [2].
9Latin for “Hold your laughter, friends!”
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To show by a general example how poorly one is reasoning and how careful one ought to be, I

will choose the following example: Let

a0 + a1 + a2 + a3 + a4 + etc.

be any infinite series. Then you know that a very useful way to sum this series is to search for

the sum of the following:

a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + etc.

and after that to put x = 1 in the result. This may be correct, but to me it seems one cannot

assume it without proof, because even if one proves that

ϕ(x) = a0 + a1x+ a2x
2 + . . .

for all values of x less than 1, it is not because of this certain that the same thing happens

for x = 1. It could very well be possible that the series a0 + a1x + a2x
2 + . . . approaches a

different quantity than a0+a1+a2+ . . . when x approaches more and more to 1. This is clear

in the general case when the series a0+ a1+ a2+ . . . is divergent, because then it has no sum.

I have proved that it is correct when the series is convergent.

The following example shows how one can cheat oneself. It can be strictly proved for all values

of x less than π that

x

2
= sinx− 1

2
sin 2x+

1

3
sin 3x− etc.

From this it seems to follow that the same formula should hold for x = π , but then we would

obtain . . . [an absurdity].

. . . . . . . . .

One applies all operations to infinite series as if they were finite, but is this allowed? Hardly!

— Where is it proved that one gets the differential of an infinite series by differentiating each

term?

It is easy to give an example where this is not correct, for example:

x

2
= sinx− 1

2
sin 2x+

1

3
sin 3x− etc.

. . . . . . . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
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3 Concluding Questions and Comments

The concerns expressed by Abel, Bolzano, Cauchy and Dedekind in the excerpts we have read in this

project were emblematic of the state of analysis at the turn of the nineteenth century. Ultimately,

mathematicians of the nineteenth century responded to this set of concerns by moving to the require-

ment of formal proof as a way to certify knowledge via the rigorous use of inequalities intended to

capture the notion of two real numbers ‘being close’ that underlies the limit concept. Other fac-

tors that influenced this direction included new teaching and research situations, such as the École

Polytechnique in Paris, that required mathematicians to think carefully about their ideas in order to

explain them to others. Today, this nineteenth century response remains at the core of the study and

practice of real analysis. The final question in this project takes another look back at the motivations

of those who led the way in formulating this response, as they expressed it in their own words.

Question 7

Look back at the excerpts from the works of Abel, Bolzano, Cauchy and Dedekind that we have read in

this project. What questions or comments would you address to these mathematicians about aspects

of their concerns that are not addressed in the earlier questions? (Write at least one question and at

least one comment, please!)
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