COVID-19 and some basics of mathematical epidemiology

Kamal Barley, Keisha Cook, Sherry Scott (presenter), Lawrence Udeigwe, Talitha Washington, Abba Gumel (lead)

ADJOINT 2020 at MSRI

February 19, 2021

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Burden of Some Infectious Diseases

Disease	Mortalities (Global)
Smallpox (430BC-1979)	> 300 million in 19th century
Black Plague (1340-1771)	> 75 million
Malaria (1600-Present)	pprox 1-2 million annually
(Spanish) Flu Pandemic (1918-1919)	> 50 million
COVID-19 (2019-Present)	> 2 million

Coronavirus Pandemics

Coronaviruses occur naturally in mammal and birds; some coronaviruses cross species and become novel human viruses

COVID-19 spreads via respiratory droplets in the air -i.e., airborne route

Coronavirus Pandemics

			COVID-19	
	SARS-CoV	MERS-CoV	(SARS-CoV2)	Sources:
Duration	2002 - 2003	2012 - present	2019 - present	Gumel et al, 2020
Incubation				
Period (infected				
to symptoms (if				Kakodkar, Kaka &
any))	2-7 days	5 days	2-14 days	Baig,2020
			486,321 (USA)	
Deaths	744 (global)	866 (global)	2,407,869 (global)	
Confirmed			27,692,967 (USA)	Johns Hopkins
Cases	8000 (global)	2519 (global)	109,155,627 (global)	University
Countries	29	27	All (220)	

Asymptomatic and Pre-symptomatic can spread and NOT show symptoms

(日) (同) (E) (E) (E)

Why Mathematical Modeling?

Mathematical models help to understand and analyze the spread and behavior of diseases

Not enough to just collect and analyze data; must combine and build a model to try to capture and understand how the disease evolves

Public Health Practitioners Set the Foundation

- Daniel Bernoulli (1760) developed a model of smallpox transmission and control
- John Snow (1855) argued that cholera was not an airborne disease and via mapping, he found a town's outbreak to be the source of a water pump
- Ross's model (1916) explains the relationship between the number of mosquitoes and incidence of malaria in humans
- Pyotr Dimitrievich En'ko (1889) developed a model of the measles epidemics
- Sir Ronald Ross (1908) published a dynamic malaria model Olgilvy Kermack(Scottish biochemist) and Anderson Grey McKendrick(Scottish military physician and epidemiologist) published work on their mathematical epidemiological model in 1927

Kermack-McKendrick (KM) SIR Model

Total population is divided into mutually-exclusive sub-populations (called compartments):

- S denotes the susceptibles (can be infected)
- I denotes the infectives (infected and infectious (can spread))
- R denotes the recovered (removed (immune))
- $\beta > 0$, effective contact rate; $\gamma > 0$, recovery rate

Kermack-McKendrick (KM) SIR Model: Main Assumptions

- each individual has equal chance of interacting with any other (homogenous mixing)
- large population size (else stochastic effects dominate)
- exponentially-distributed waiting times in epidemiological compartments, for example, the infective period is exponentially distributed with mean

$$\int_0^\infty e^{-\gamma s} ds = 1/\gamma$$

where γ leave the infective class and the fraction of infectives remaining infective s time units after having become infected is $e^{-\gamma s}$

- no entry into or departure from the population, except possibly by disease-induced deaths (closed population)
- time scale of the disease is assumed faster than the time scale of births and deaths (so that the impact of demographic effects on the population may be ignored)

Kermack-McKendrick (KM) SIR Model

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

 β = average number of contacts an infective makes per unit of time $1/\gamma$ = average duration of infectiousness

KM Model explains the rapid rise and fall in the number of infected; shows that epidemics come and go and not every member of the population is affected

Kermack-McKendrick (KM) SIR Model

Since β = average number of contacts an infective makes per unit of time if S(0) = N, then, one infected individual will infect $\beta S(0) = \beta N$ individuals per unit time

Since the average duration of infectiousness = $1/\gamma$, an infected individual will remain infectious for an average time period of $1/\gamma$; thus, the average number of individuals a typical infective will in turn infect is $\frac{\beta S(0)}{\gamma}$.

That is, the (basic) reproduction number $R_0 = \frac{\beta S(0)}{\gamma}$

10/30

(日) (同) (E) (E) (E)

The basic reproduction number R_0

 R_0 is the average number of secondary infections produced when one infected individual is introduced into a host population of susceptibles.

Basic reproduction number

 $R_0 = 2$

Epidemiological implication: disease can be effectively controlled if $R_0 < 1$ and disease persists if $R_0 > 1$

SIRD Model (as in code)

$$\frac{dS}{dt} = -\beta(S/N)I$$
$$\frac{dI}{dt} = \beta(S/N)I - \gamma I - \delta I$$
$$\frac{dR}{dt} = \gamma I$$
$$\frac{dD}{dt} = \delta I$$

- S denotes the susceptibles
- I denotes the infective (infected and infectious)
- R denotes the recovered
- D denotes deaths
- (β,γ,δ) are non-negative contact, recovery and death rates

•
$$N(t) = S(t) + I(t) + R(t)$$

Flow Diagram for Model in paper (modified Kermack-Mckendrik type epidemic mode!)

State Variable	Description
S	Population of susceptible individuals
Ε	Population of exposed individuals (newly-infected but not infectious)
E_p	Population of presymptomatic (infectious) individuals
Ι	Population of symptomatically-infectious individuals
Α	Population of asymptomatically-infectious individuals
J	Population of self-isolated infectious individuals
Н	Population of hospitalized individuals
R	Population of recovered individuals
С	Population of individuals in intensive care unit (ICU)
D	Population of deceased COVID-19 individual
	(四) (四)

Model

Model Formulation: Differential Equations

$$\begin{split} \frac{dS}{dt} &= -\beta_I (1 - \epsilon_m c_m) \frac{SI}{N} - \beta_A (1 - \epsilon_m c_m) \frac{SA}{N} - \beta_P (1 - \epsilon_m c_m) \frac{SE_P}{N} = -\lambda S \\ \frac{dE}{dt} &= \beta_I (1 - \epsilon_m c_m) \frac{SI}{N} + \beta_A (1 - \epsilon_m c_m) \frac{SA}{N} + \beta_P (1 - \epsilon_m c_m) \frac{SE_P}{N} - \sigma_e E = \lambda S - \sigma_e E \\ \frac{dE_P}{dt} &= \sigma_e E - \sigma_P E_P - \tau_P E_P \\ \frac{dI}{dt} &= r\sigma_P E_P - \alpha_I I - \tau_I I - \gamma_I I - \delta_I I \\ \frac{dA}{dt} &= (1 - r) \sigma_P E_P - \alpha_A A - \tau_A A - \gamma_A A - \delta_A A \\ \frac{dH}{dt} &= \alpha_I I + \alpha_A A + \alpha_J J - \psi_H H - \gamma_H H - \delta_H H \\ \frac{dC}{dt} &= \psi_H H - \gamma_C C - \delta_C C \\ \frac{dJ}{dt} &= \tau_P E_P + \tau_A A + \tau_I I - \alpha_J J - \gamma_J J \\ \frac{dR}{dt} &= \gamma_I I + \gamma_A A + \gamma_C C + \gamma_J J + \gamma_H H \\ \frac{dD}{dt} &= \delta_A A + \delta_I I + \delta_H H + \delta_C C \end{split}$$

Model

Model Fitting & Parameter Estimation

Parameter	Description	Range	Baseline value
β_I	Effective contact rate for symptomatically-infectious individuals	FITTED	FITTED
β_{A}	Effective contact rate for asymptomatically-infectious individuals	FITTED	FITTED
β_P	Effective contact rate for presymptomatically-infections individuals	FITTED	FITTED
τ_{Λ}	Rate at which asymptomatically-infectious humans self-isolate	FITTED	FITTED
τ_p	Rate at which presymptomatic infectious individuals self-isolate	FITTED	FITTED
α_J	Hospitalization rate for self-isolated individuals	FITTED	FITTED

Table: Parameters that are fitted using nonlinear least squares method.

Other 18 parameters are estimated using literature and COVID-19 information.

Model

Model Fitting & Parameter Estimation

We fit the model to the cumulative mortality data.

Figure: The lockdown period. The plots show the model (blue) against the data (red) over the respective lockdown periods.

Model

Many Variations and Complexities

There are many variations and complexities to consider or include, e.g.,:

- No Immunity -e.g., SIS
- births and deaths (demographic effects)
- non-homogeneity e.g, different effective contact rates β
- immunity passive (from mother to child), partially/temporarily acquired,...
- partial differential equations e.g. age dependent population growth so depends on age and time
- non deterministic features -i.e., add stochastic features

For example, in our paper, we focus on 3 infectious classes.

Model

Main Drivers of spread in terms of daily cases? (in paper)

Pre-symptomatic & Asymptomatic population versus Symptomatic population.

Figure: Daily cases. Pre-symptomatic & asymptomatic (cyan) versus symptomatic (red) for each state during their respective postlockdown period.

Э

ヘロン 人間 とくほ とくほ とう

Model

Main Drivers in terms of cumulative deaths or cases? (in paper)

We focus on the two groups separately.

- For pre-symptomatic/asymptomatic (green), let $\beta_I = 0$
- For symptomatic (magenta), let $\beta_A = 0$ and $\beta_P = 0$

Figure: Cumulative cases and deaths for Arizona and the U.S. over the respective lockdown period.

Model

Implications (in paper)

What happens when testing is increased?

- Increase testing of asymptomatic and presymptomatic individuals (green)
- Increase testing of symptomatic (magenta)

Figure: The effect of a 50 percent increase in testing of asymptomatic and presymptomic vs sympomtomatic individuals on the cumulative deaths in the US during post-lockdown.

イロト イポト イヨト イヨト

Model

Recap

Mathematical modeling of diseases to understand and analyze the spread, control and mitigation. Involves

- formulate model
- determine DEs and parameter values
- mathematical analysis and computations- qualitative dynamics (equilibria, asymptotic stability), calculation of *R*₀, etc.
- fit to data parameter estimation
- numerical solutions, simulations, sensitivity and uncertainty analysis

R_0 for Some Infectious Diseases (WHO 2016)

 R_0 (the basic reproduction number) - how many people, on average, an infectious person will in turn infect

Disease	R_0
COVID-19	2 -7? (nih.gov)
SARS	2-3
Ebola (2014)	1.5-2.5
HIV/AIDS	2-5
Measles	12-18
Mumps	4-7
Pertussis	12-17
Diptheria	6-7
Smallpox	5-7

22/30

How to stop the spread of COVID-19??

Containment & Mitigation strategies such as

- Iockdown
- testing widespread and frequent, isolation/quarantine
- face masks
- social distancing, limit mass gatherings, proper ventilation in enclosed space
- contact tracing DIFFICULT unless number of infectious are small

Challenges:

- level of compliance
- spread without symptoms
- super-spreaders

Vaccines Cautions & Challenges

Vaccines!! But how many and how fast to stop spread?

Want a large enough fraction (immunity fraction) to have immunity so that the virus can't spread (or mutate) significantly and thus the rest of (unvaccinated) population is protected -i.e., herd immunity is achieved.

immunity fraction = $1 - \frac{1}{R_0}$

In general, as reproduction number (spread of virus) increases, then immunity fraction (required number to vaccinate) increases

If $R_0 = 2$ (the minimum), then immunity fraction $=\frac{1}{2}$, since U.S. population is about 331 million, need more than 150 million vaccinated - at 14 million on 2/15/2021.

Vaccines Cautions & Challenges

Some challenges and questions:

- vaccine distribution
- vaccine efficacy
- duration of vaccine immunity
- vaccine and infectiousness
- vaccine and different strains
- $\bullet\,$ vaccine distribution & administration disparities both national and global

Vaccines Cautions & Challenges - understanding fears

The Tuskegee Syphilis Experiment

- Conducted 1932-1972 in Tuskegee, AL by the US Public Health Service
- Recruited about 400 black men with syphilis to research natural progression of the untreated disease
 - Never told if they had syphilis nor were they treated for it
- Story broke out in the Washington Star on July 25, 1972
- In 1974 Congress passed the National Research Act to oversee and regulate human experimentation in medicine
- In 1997 HBO produces Miss Evers' Boys
- In May of 1997, President Clinton formally apologized

Some Vaccine Success Stories

Disease	R_0	Herd Immunity Threshold & Vaccine Info
COVID-19	2 -7	50% - 86%
Measles	12-18	92% - $95%$ "eliminated" (US 2000);20+yrs MMR
Diptheria	6-7	83% - $86%$ "nearly unheard of in US";DTAP, Tdap, Td
Pertussis	12-17	92% - $94%$ "outbreaks & peaks";DTaP, Tdap, Td
Smallpox	5-7	80% - $86%$ "eradicated" Worldwide 1980; (US 1952)

- Diptheria vaccine prgm took 80+ yrs to eliminate it in US ; since 1920s
- Smallpox eradication took about 200 years
- Measles: about 400 500 deaths per year in US (recent outbreaks?); COVID-19: > 450,00 deaths so far in US;

COVID-19 Vaccine Success!?

Vaccine-acquired herd immunity requires stopping the spread of virus, else it's like an exercise in futility.

COVID-19 Vaccine Success!?

Fully vaccinated percentages are increasing but still considerably too low

kana tamina 👷	anna Records		
	123	225	
manual lance	0.90	5.00	1389
teres?	10,075	11,054	AMPA .
Rentment (Auriana Islanda	a.mi	4.401	3MM
Res crane 1	201249	Har	1945
Matha >	17.00	14,788	140
Republic address	6.65	120	4295
horth Saturda >	DUAP	40.00	6.05
Non-Marica	194,799	10.000	1.075
South Roberts >	ID HI	#6.00F	Citra .
Innered. 1	201.400	11,000	1499
Connectical >	876,754	10,070	105
Mater 1	Delate	3.49	6395
Delevado >	PRED	HEAD4	3,0%
Electric >	1.410.008	LINC III	1.007.
Intel 1	104.000	20.24	Line
Indiana 1	LINDER	INCOME.	4305
No. 203	1,00,000	101,000	A 1070.
December 1	LODIN	18.29	4.87%
Mattern >	101.000	11.007	4.00%
Selected at 1	200.0.00	99,529	A.005.

Of the roughly 40 million people who live in California, 4,493,220 have received at least one dose, or 11.4% of the total. Of those, 1,287,390, or 3.3%, have received the recommended second dose.

Percentage of Californians who have received one or two doses

Centers for Disease Control and Prevention

	and second
Bilder Street	fachasi an lan
	The second secon
Maximi Kanya la Wasanah mulaksis ing ment Juan 40, 40	N.O. 100 8.0
1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	

COUNTRY KAME	2045 Exercises	No. Account	SUBJECT SACONARD	
based. >	6,442,339	2,534,895	28.53%	
Généter	25,287	9,622	26.24%	
Sexchelles >	\$1.829	LADOF	14.12%	
Capman Islands	10,043	4,375	0.02%	
United States	\$2,804,356	14.022,643	4.30%	
Ide of Man	10,710	3,328	3.89%	
Maha >	\$0.175	15.641	3.32%	
Denmark >	398,034	187,595	2.89%	
United Arab Emirates	6.085,236	200,000	2.89%	
bermuda	15.000	1.600	2.50%	
Section >	816,871	147,730	2.42%	
Sitema >	130.399	43,647	2.30%	
Terrania 3	111.00	ALC: ML	2.375	

Why Mathematical Epidemiology?

To understand and analyze emerging and re-emerging infectious diseases such as

- malaria
- ebola
- measles
- more coronaviruses??? due to
 - environmental degradation?
 - invasion of ecosystems?
 - climate change (global warming)?
 - increased global connections and interactions?

...we are constantly a short flight away from a serious epidemic. — Canadian Advisory Committee on SARS, 2003

THANK YOU!

Funding Sources for ADJOINT: Alfred P. Sloan Foundation (G-2020-12602). National Science Foundation (DMS-1915954 and DMS-2016406) National Security Agency (H98230-20-1-0015)

30/30