Special Topics in Advanced Math: History of Mathematics

Math 395 Fall 2023 © 2023 Ron Buckmire Fowler 310 TR 1:30pm - 2:55pm http://sites.oxy.edu/ron/math/395/23/

Let's classify the symmetries of the frieze patterns on the last sheet and put our results in our table below. Put a Y if the given frieze has that symmetry, and an N if not.

	А	В	С	D	E	F
Translation						
Horizontal Reflection						
Vertical Reflection						
180° Rotation						
Glide Reflection						

One can do these reflections/rotations/translations on any given motif, but is there any kind of systematic way to classify the <u>patterns</u> that emerge? YES!

There are Only Seven Distinct Frieze Patterns

One can prove (although we won't) that there are, in fact, only 7 distinct patterns for friezes. Each of the friezes above represents one of the 7 distinct patterns. (Obviously we can create an infinite number of different strips even though there are only 7 basic patterns, simply by altering the underlying motif.)

	Translation	Horizontal Reflection	Vertical Reflection	180 Degree Rotation	Glide Reflection
pma2					
p112					
p111					
p1a1					
p1m1					