## Special Topics in Advanced Math: History of Mathematics

## \{African Strip Patterns A



B


C


D


E


F


Let's classify the symmetries of the frieze patterns on the last sheet and put our results in our table below. Put a Y if the given frieze has that symmetry, and an N if not.

|  | A | B | C | D | E | F |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Translation |  |  |  |  |  |  |
| Horizontal Reflection |  |  |  |  |  |  |
| Vertical Reflection |  |  |  |  |  |  |
| $180^{\circ}$ Rotation |  |  |  |  |  |  |
| Glide Reflection |  |  |  |  |  |  |

One can do these reflections/rotations/translations on any given motif, but is there any kind of systematic way to classify the patterns that emerge? YES!

## There are Only Seven Distinct Frieze Patterns

One can prove (although we won't) that there are, in fact, only 7 distinct patterns for friezes. Each of the friezes above represents one of the 7 distinct patterns. (Obviously we can create an infinite number of different strips even though there are only 7 basic patterns, simply by altering the underlying motif.)

|  | Translation | Horizontal Reflection | Vertical Reflection | 180 Degree <br> Rotation | Glide <br> Reflection |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| p112 |  |  |  |  |  |
| $p 111$ |  |  |  |  |  |
| $\sim$ |  |  |  |  |  |
| p1m1 <br> $444 \div 4 \frac{4}{4}$ |  |  |  |  |  |
| pmil |  |  |  |  |  |
| pmm2 |  |  |  |  |  |

