History of Mathematics

Math 395 Spring 2010 © 2010 Ron Buckmire

Fowler 310 MWF 10:30am - 11:25am http://faculty.oxy.edu/ron/math/395/10/

Class 19: Wednesday March 22

TITLE Mathematics of the Renaissance Period

CURRENT READING: Katz, §12 NEXT READING: Katz, §13

Homework #8 DUE Friday April 2 (in class)

Katz, p. 418: #4, #8, #21, #30, #37. EXTRA CREDIT: page 419, #29.

SUMMARY

We will look at the mathematical developments of the early Renaissance period.

Cardano's Solution of the Cubic Equation

Gerolamo Cardano (1501-1576) was the first person to publish a solution to the solution of the cubic equation $x^3 + cx = d$ in his *Ars magna, sive de regulis algebraicis* (*The Great Art, or On The Rules of Algebra*).

Cardano's Formula is

$$x = \sqrt[3]{\sqrt{\left(\frac{d}{2}\right)^2 + \left(\frac{c}{3}\right)^3 + \frac{d}{2}}} - \sqrt[3]{\sqrt{\left(\frac{d}{2}\right)^2 + \left(\frac{c}{3}\right)^3 - \frac{d}{2}}}$$

Nicolo Tartaglia (1499-1557) had first shown that if you select two numbers u and v such that $u^3 - v^3 = d$ and $u^3v^3 = \left(\frac{c}{3}\right)^3$ then the solution to $x^3 + cx = d$ is x = u - v.

Exercise

Let's use Cardano's formula to solve the cubic $x^3 + 6x = 20$

EXAMPLE

Let's show that Tartaglia's conditions on u and v do indeed solve $x^3 + cx = d$

GroupWork

We should be able to derive Cardano's formula considering that Tartaglia's conditions correspond to solving a system of equations for two unknown quantities whose difference and product are known quantities.

First, we can show that $py^3 + qy^2 + ry = s$ can be made to look like $x^3 + cx = d$ by dividing by p, and using the transformation $y=x+\beta$ and selecting $\beta = -\frac{1}{3}\frac{q}{p}$

Second, solve the system a-b=x and $ab=\frac{1}{3}c$ and re-derive Cardano's formula.

Notation issues

cosathingcensosquarecubocuberadiceroot \bar{p} più (plus) \bar{m} meno (minus)

Note, that Cardano did not use modern notation but would have written down the solution to the solution to $x^3 + 6x = 20$ as

$$\mathcal{R}$$
 v : cub \mathcal{R} 108 p : 10 m : \mathcal{R} v : cub \mathcal{R} 108 m : 10

Generally, this kind of algebraic manipulation is called **rhetorical** as opposed to **symbolic** which came later.

Don't Fear The Square Root!

Look at this problem by Antonio de Mazzinhi (1353-1383): "Find two numbers such that multiplying one by another makes 8 and the sum of their squares is 27." **Ans:** $x = \frac{\sqrt{43}}{2}$, $y = \frac{11}{4}$

The solution involves choosing the first number is *un cosa meno la radice d'alchuna quantità* (a thing minus the root of some quantity) while the second number equals *una cosa più la radice d'alchuna quantità* (a thing plus the root of some quantity)

Exercise

Use Mazzinhi's method to solve the above problem.

The Beginning of Imaginary Numbers

Cardano also gave a formula for the solution of $x^3 = cx + d$, namely

$$x = \sqrt[3]{\frac{d}{2} + \sqrt{\left(\frac{d}{2}\right)^2 - \left(\frac{c}{3}\right)^3}} + \sqrt[3]{\frac{d}{2} - \sqrt{\left(\frac{d}{2}\right)^2 - \left(\frac{c}{3}\right)^3}}$$

Rafael Bombelli (1526-1572) learned how to deal with examples of Cardano's formula for the cubic $x^3 = cx + d$ where the root becomes complex because $\left(\frac{d}{2}\right)^2 - \left(\frac{c}{3}\right)^3$ becomes negative.

According to Katz, Bombelli proposed a name for such numbers as "neither positive (più) nor negative (meno)." What we call imaginary numbers, such as bi and -bi, Bombelli called più di meno (plus of minus) and meno di meno (minus of minus), respectively.

Bombelli gave multiplication rules for these new numbers, such as:

più di meno times più di meno equals meno and meno di meno times più di meno equals più In Modern Notation:

Practical Uses

Bombelli was able to show that the solution to $x^3 = 15x + 4$ is x=4, even though by Cardano's formula one should get

$$x = \sqrt[3]{2 + \sqrt{-121}} + \sqrt[3]{2 - \sqrt{-121}}$$

However, if one assumes

$$\sqrt[3]{2 + \sqrt{-121}} = a + \sqrt{-b}$$

$$\sqrt[3]{2 - \sqrt{-121}} = a - \sqrt{-b}$$

One can obtain the equations $a^2+b=5$ and $a^3-3ab=2$ which Bombelli carefully showed has the solution a=2 and b=1.

Using this information, we can obtain the solution to the cubic to be x=4. Bombelli was able to use this knowledge to solve previously "unsolvable" quadratic equations like $x^2 + 20x = 4$

The Analytic Art

François Viète (1540-1603) developed theories for solving problems based on the work of the Greeks and published a work called *In artem analyticem isagoge* (*Introduction to the Analytic Art*) in 1591. Pappus had divided analysis into two parts: "problematic analysis" and "theorematic analysis."

Viète renamed these kinds of analysis and added a third.

Problematic analysis became **zetetic analysis** (the procedure by which one transforms a problem into an equation linking the unknown and various knowns).

Theorematic analysis became **poristic analysis** (the procedure exploring the truth of a theorem by appropriate symbolic manipulation)

Exegetics is the art of transforming an equation found by zetetic analysis to find a value for the unknown.

Viète is also known for his introduction of new symbols to represent terms, and was one of the first people to do algebra in a symbolic, not rhetorical manner.

Viète would write the equation $A^2 + 2BA = Z$ as "A quad + B2 in A equals Z plane" and its solution as

 $A = \sqrt{Z^2 + B^2} - B$ becomes A is $l.\overline{Z}$ plane + B quad - B which Katz records as the first occurrence of the quadratic formula as we understand it today, in symbolic form.

Viète wrote Cardano's formula for the equation "A cube – B plane 3 in A equals Z solid 2" as

A is $l.c.\overline{Z}$ solid $+l.\overline{Z}$ solidsolid-B planeplaneplane+ $l.c.\overline{Z}$ solid $-l.\overline{Z}$ solidsolid-B planeplaneplaneplane