# History of Mathematics

Math 395 Spring 2010 ©2010 Ron Buckmire

Fowler 310 MWF 10:30am - 11:25am http://faculty.oxy.edu/ron/math/395/10/

#### Class 13: Monday February 22

TITLE Chinese Mathematics CURRENT READING: Katz, §7 NEXT READING: Katz, §8

Homework #5 DUE Monday March 1

Katz, p. 168: #2,#20. p.191: 7, 11, 21. EXTRA CREDIT: page 168, #4.

#### **SUMMARY**

Today we will begin looking at the mathematical contributions from ancient China.

#### **Number System**

The Chinese number system was decimal, similar to the Egyptian one, with many different symbols used. However, in the Chinese system there were separate symbols for the first 9 digits AND some multiples of ten. (Recall that the Egyptian Hieroglyphic number system just had independent symbols for powers of 10.)

|         | ==            | =    | <b>=</b> | X          |
|---------|---------------|------|----------|------------|
| 1       | 2             | 3    | 4        | 5          |
| 1       | †             | )(   | Š        | {          |
| 6       | 7             | 8    | 9        | 10         |
| V       | $\Rightarrow$ | W    | 苹        | $\uparrow$ |
| 20      | 30            | 40   | 50       | 60         |
| <u></u> |               |      |          | <b>©</b> ₩ |
| 100     | 200           | 300  | 400      | 500        |
| 4       | 4             | 2    | \$       | 2          |
| 1000    | 2000          | 3000 | 4000     | 5000       |

# **EXAMPLE**

What number does (a) to represent? How would you represent the number 3282?

Katz reports that the Chinese apparently also represented numbers using small bamboo rods, called counting rods in a decimal place system. They represented negative numbers by using different colors. When a particular place was empty it would be denoted by a small dot (representing zero).

### **Exercise**

### Nine Chapters on the Mathematical Art (Jiuzhang suanshu)

The most famous of Ancient Chinese mathematical works is *Jiuzhang suanshu* which is primarily know from the version commented on by Liu Hui in the Third Century CE.

# GroupWork

Let's replicate the Chinese square root algorithm to evaluate "the side of a square of area 55,225"

| 100a | 10 <i>b</i> | c |
|------|-------------|---|
|      |             |   |
|      |             |   |
|      |             |   |
|      |             |   |
|      |             |   |
|      |             |   |
|      |             |   |
|      |             |   |

# The gougu Rule (Pythagoras' Theorem)

Katz gives two different proofs of Pythagoras theorem, one due to Zhao Shuang in *Arithmetic Classic of the Gnomon* 



And Hui's proof



### **Standards of Proof**

What can we say about the standard of proof used by Chinese mathematicians as compared to the Greeks and modern standards?

#### Calculation of Pi

$$a_n = \sqrt{r^2 - \left(\frac{c_n}{2}\right)^2}$$
 and  $c_{2n} = \sqrt{\left(\frac{c_n}{2}\right)^2 + (r - a_n)^2}$ .

$$S_{2n} = 2n\frac{1}{2}\frac{c_n}{2}r = \frac{1}{2}nrc_n.$$



By computing the area of a regular-sided n-gon,  $S_n$ , and the corresponding 2n-gon, Liu was able to approximate  $\pi$  by using r=10 and n=96 to obtain  $\pi \sim 3.141024$ . Later, Zu Chingzhi (c. 429-500) continued the calculations using n=24576 to obtain  $\pi \sim 3.1415926$ 

# Magic Square

The earliest known magic square was found by the Chinese (Struik, *On Ancient Chinese Mathematics*)

| 4 | 9 | 2 |
|---|---|---|
| 3 | 5 | 7 |
| 8 | 1 | 6 |

The search for other magic squares apparently lead to the solution of linear systems of equations and a method very similar to Gaussian elimination.

$$3x+2y+z=39$$

$$2x + 3y + z = 34$$

$$x + 2y + 3z = 26$$

becomes

1 2 3

2 3 2

3 1 1

26 34 39

36 1 1

99 24 39

Which corresponds to 3x+2y+z=3, 5y+z=24, 36z=99.