History of Mathematics

Math 395 Spring 2010 ©2010 Ron Buckmire

Fowler 310 MWF 10:30am - 11:25am http://faculty.oxy.edu/ron/math/395/10/

Class 11: Wednesday February 17

TITLE Ptolemy and the dawn of trigonometry

CURRENT READING: Katz, §5.1-5.3 CURRENT READING: Katz, §6

Homework #4 for Friday February 19

Katz, p. 127-129. #1,#4,#12,#17, #18 and #34. EXTRA CREDIT: #5.

SUMMARY

Claudius Ptolemy (CE 100-178) is most well-known for his model of the solar system and his publication of *The Almagest*.

Hipparchus and the beginning of trigonometry

Hipparchus of Bythnia (190-120 BCE) was defined the length of a chord subtended by an angle α , denoted chord(α) or crd(α) by Katz. This marked the beginning of trigonometry as we know it today.

Hipparchus constructed a table of chords and used it to make astronomical calculation of surprising accuracy. He used a sexagesimal approximation of π to be 3;8,30 and assuming that there were 6,0,0 minutes (360 degrees divided into 60 minutes) in a circle he computed that a radius of a circle had to be 3438 minutes long, or 57,18 (in sexagesimal).

He calculated the length of the solar year to be 365 ½ days, less 4 minutes, 48 seconds (off by 6 minutes from modern calculations) and the length of the lunar month to be 29 days, 12 hours, 44 minutes, 2½ seconds (less than 1 second off). Source: G. Donald Allen's *Ancient Greek Mathematics*.

Hipparchus' work was exceeded by the work of Claudius Ptolemy, who produced a table of chords from every angles from one-half a degree up to 180 degrees (in sexagesimal, of course). See Table 5.1 of Katz.

The Almagest

Ptolemy published *Mathematical Collection* (*Mathematiki Syntaxis*) which was translated into Arabic and because it was the predominant astronomical work for centuries it became known as *megisti syntaxis* (the greatest collection) or "*al-magisti*" or in English, the *Almagest*.

Almost nothing is known about Ptolemy's personal life but he developed a mathematical model which described the motion of the sun, moon and known planets.

Ptolemy's Theorem: Given any quadrilateral inscribed in a circle, the product of the diagonals equals the sum of the products of the opposite sides.

Theorem. |AC| |BD| = |AD| |BC| + |AB| |DC|

EXAMPLE

Let's try and work through the proof of the theorem (Katz, page 147).

Applying Ptolemy's Theorem

We can reproduce some trigonometric identities. Consider the figure below (Katz, Figure 5.18):

It turns out that letting AD=crd(α) and AB=crd(β) then BC=crd(α - β). Applying Ptolemy's Theorem to the quadrilateral ABCD produces:

120
$$\operatorname{crd}(\alpha - \beta) = \operatorname{crd}(\alpha) \operatorname{crd}(180-\beta) - \operatorname{crd}(\beta) \operatorname{crd}(180-\alpha)$$

Which Katz claims can easily be shown to be equivalent to the well-known sine difference formula

$$\sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta)$$

Heron's Formula(s)

Heron of Alexandria worked out a lot of formulas for the areas of plane figures, the most famous of which is

Area of a triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Where $s = \frac{1}{2}(a+b+c)$ and the lengths of the three sides are a,b and c. Some have attributed this formula to Archimedes although it appears in Heron's *Metrica*.

Heron also gave formulas for A_n , the areas of regular polygons with n sides

$$A_3 \approx \frac{13}{30}a^2 A_5 \approx \frac{5}{3}a^2 A_7 \approx \frac{43}{12}a^2$$

He used $A = \frac{11}{14}d^2$ as the area of a circle of diameter d, making use of Archimedes approximation of $\frac{22}{7}$ for π .