CHAPTER 3

1. One way to do this is to use I-4. Namely, consider the isosceles triangle $A B C$ with equal sides $A B$ and $B C$ also as a triangle $C B A$. Then the triangles $A B C$ and $C B A$ have two sides equal to two sides and the included angles also equal. Thus, by I-4, they are congruent. Therefore, angle $B A C$ is equal to angle $B C A$, and the theorem is proved.
2. Put the point of the compass on the vertex V of the angle and swing equal arcs intersecting the two legs at A and B. Then place the compass at A and B respectively and swing equal arcs, intersecting at C. The line segment connecting V to C then bisects the angle. To show that this is correct, note that triangles $V A C$ and $V B C$ are congruent by $S S S$. Therefore, the two angles $A V C$ and $B V C$ are equal.
3. Let the lines $A B$ and $C D$ intersect at E. Then angles $A E B$ and $C E D$ are both straight angles, angles equal to two right angles. If one subtracts the common angle $C E B$ from each of these, the remaining angles $A E C$ and $B E D$ are equal, and these are the vertical angles of the theorem.
4. Suppose the three lines have length a, b, and c, with $a \geq b \geq c$. On the straight line $D H$ of length $a+b+c$, let the length of $D F$ be a, the length of $F G$ be b, and the length of $G H$ be c. Then draw a circle centered on F with radius a and another circle centered at G with radius c. Let K be an intersection point of the two circles. Then connect $F K$ and $G K$. Triangle $F K G$ will then be the desired triangle. For $F K=F D$, and this has length a. Also $F G$ has length b, while $G K=G H$ and this has length c. Note also that we must have $b+c>a$, for otherwise the two circles would not intersect. That $a+b>c$ and $a+c>b$ is obvious from how we have labeled the three lengths.

5. Suppose angle $D C E$ is given, and we want to construct an angle equal to angle $D C E$ at point A of line $A B$. Draw the line $D E$ so that we now have a triangle $D C E$. (Here D and E are arbitrary points along the two arms of the given angle.) Then, by the result of exercise 4, construct a triangle $A G F$, with $A G$ along line $A B$, where $A G=C E$, $A F=C D$, and $F G=D E$. By the side-side-side congruence theorem, triangle $A G F$ is congruent to triangle $C E D$. Therefore, angle $F A G$ is equal to angle $D C E$, as desired.
6. Let $A B C$ be the given triangle. Extend $B C$ to D and draw $C E$ parallel to $A B$. By I-29, angles $B A C$ and $A C E$ are equal, as are angles $A B C$ and $E C D$. Therefore angle $A C D$ equals the sum of the angles $A B C$ and $B A C$. If we add angle $A C B$ to each of these, we get that the sum of the three interior angles of the triangle is equal to the straight angle $B C D$. Because this latter angle equals two right angles, the theorem is proved.
7. Place the given rectangle $B E F G$ so that $B E$ is in a straight line with $A B$. Extend $F G$ to
H so that $A H$ is parallel to $B G$. Connect $H B$ and extend it until it meets the extension of $F E$ at D. Through D draw $D L$ parallel to $F H$ and extend $G B$ and $H A$ so they meet $D L$ in M and L respectively. Then $H D$ is the diagonal of the rectangle $F D L H$ and so divides it into two equal triangles $H F D$ and $H L D$. Because triangle $B E D$ is equal to triangle $B M D$ and also triangle $B G H$ is equal to triangle $B A H$, it follows that the remainders, namely rectangles $B E F G$ and $A B M L$ are equal. Thus $A B M L$ has been applied to $A B$ and is equal to the given rectangle $B E F G$.
8. Because triangles $A B N, A B C$, and $A N C$ are similar, we have $B N: A B=A B: B C$, so $A B^{2}=B N \cdot B C$, and $N C: A C=A C: B C$, so $A C^{2}=N C \cdot B C$. Therefore $A B^{2}+A C^{2}=B N \cdot B C+N C \cdot B C=(B N+N C) \cdot B C=B C^{2}$, and the theorem is proved.
9. In this proof, we shall refer to certain propositions in Euclid's Book I, all of which are proved before Euclid first uses Postulate 5. (That occurs in proposition 29.) First, assume Playfair's axiom. Suppose line t crosses lines m and l and that the sum of the two interior angles (angles 1 and 2 in the diagram) is less than two right angles. We know that the sum of angles 1 and 3 is equal to two right angles. Therefore $\angle 2<\angle 3$. Now on line $B B^{\prime}$ and point B^{\prime} construct line $B^{\prime} C^{\prime}$ such that $\angle C^{\prime} B^{\prime} B=\angle 3$ (Proposition 23). Therefore, line $B^{\prime} C^{\prime}$ is parallel to line l (Proposition 27). Therefore, by Playfair's axiom, line m is not parallel to line l. It therefore meets l. We must show that the two lines meet on the same side as C^{\prime}. If the meeting point A is on the opposite side, then $\angle 2$ is an exterior angle to triangle $A B B^{\prime}$, yet it is smaller than $\angle 3$, one of the interior angles, contradicting proposition 16. We have therefore derived Euclid's postulate 5.

Second, assume Euclid's postulate 5. Let l be a given line and P a point outside the line. Construct the line t perpendicular to l through P (Proposition 12). Next, construct the line m perpendicular to line t at P (Proposition 11). Since the alternate interior angles formed by line t crossing lines m and l are both right and therefore are equal, it follows from Proposition 27 that m is parallel to l. Now suppose n is any other line through P. We will show that n meets l and is therefore not parallel to l. Let $\angle 1$ be the acute angle
that n makes with t. Then the sum of angle 1 and angle $P Q R$ is less than two right angles. By postulate 5 , the lines meet.

Note that in this proof, we have actually proved the equivalence of Euclid's Postulate 5 to the statement that given a line l and a point P not on l, there is at most one line through P which is parallel to l. The other part of Playfair's Axiom was proved (in the second part above) without use of postulate 5 and was not used at all in the first part.
10. One possibility for an algebraic translation: If the line has length a and is cut at a point with coordinate x, then $4 a x+(a-x)^{2}=(a+x)^{2}$. This is a valid identity. Here is a geometric diagram, with $A B=M E=a$ and $C B=B D=B K=K R=x$:

11. If $A B C$ is the given acute-angled triangle and $A D$ is perpendicular to $B C$, then the theorem states that the square on $A C$ is less than the squares on $C B$ and $B A$ by twice the rectangle contained by $C B$ and $B D$. If we label $A C$ as $b, B A$ as c, and $C B$ as a, then $B D=c \cos B$. Thus the theorem can be translated algebraically into the form $b^{2}=a^{2}+c^{2}-2 a c \cos B$, exactly the law of cosines in this case.

12. Suppose the diameter $C D$ of a circle with center E bisects the chord $A B$ at F. Then join $E A$ and $E B$, forming triangle $E A B$. Triangles $A E F$ and $B E F$ are congruent by side-side-side (since $A E=B E$ are both radii of the circle and F bisects $A B$). Therefore angles $E F A$ and $E F B$ are equal. But the sum of those two angles is equal to two right angles. Hence each is a right angle, as desired. To prove the converse, use the same
construction and note that triangle $A E B$ is isosceles, so angle $E A F$ is equal to angle $E B F$, while both angles $E F A$ and $E F B$ are right by hypothesis. It follows that triangles $A E F$ and $B E F$ are again congruent, this time by angle-angle-side. So $A F=B F$, and the diameter bisects the chord.
13. In the circle $A B C$, let the angle $B E C$ be an angle at the center and the angle $B A C$ be an angle at the circumference which cuts off the same arc $B C$. Connect $\angle E A B$. Similarly, $\angle F E C$ is double $\angle E A C$. Therefore the entire $\angle B E C$ is double the entire $\angle B A C$. Note that this argument holds as long as line $E F$ is within $\angle B E C$. If it is not, an analogous argument by subtraction holds.

14. Let $\angle B A C$ be an angle cutting off the diameter $B C$ of the circle. Connect A to the center E of the circle. Since $E B=E A$, it follows that $\angle E B A=\angle E A B$. Similarly, $\angle E C A=\angle E A C$. Therefore the sum of $\angle E B A$ and $\angle E C A$ is equal to $\angle B A C$. But the sum of all three angles equals two right angles. Therefore, twice $\angle B A C$ is equal to two right angles, and angle $B A C$ is itself a right angle.
15. Let triangle $A B C$ be given. Let D be the midpoint of $A B$ and E the midpoint of $A C$. Draw a perpendicular at D to $A B$ and a perpendicular at E to $A C$ and let them meet at point F (which may be inside or outside the triangle, or on side $B C$). Assume first that F is inside the triangle, and connect $F B, F A$, and $F C$. Since $B D=B A$, triangles $F D B$ and $F D A$ are congruent by side-angle-side. Therefore $F B=F A$. Similarly, triangles $F E A$ and $F E C$ are congruent. So $F C=F A$. Therefore all three lines $F A, F B$, and $F C$ are equal, and a circle can be drawn with center F and radius equal to $F A$. This circle will circumscribe the given triangle. Finally, note that the identical construction works if F is on line $B C$ or if F is outside the triangle.

16. Let G be the center of the given circle and $A G D$ a diameter. With center at D and radius $D G$, construct another circle. Let C and E be the two intersections of the two (equal) circles, and connect $D C$ and $D E$. Then $D E$ and $D C$ are two sides of the desired regular hexagon. To find the other four sides, draw the diameters $C G F$ and $E G B$. Then $C B$,
$B A, A F$, and $F E$ are the other sides. To demonstrate that we have in fact constructed a regular hexagon, note that all the triangles whose bases are sides of the hexagon and whose other sides are radii are equilateral; thus all the sides of the hexagon are equal and all the angles of the hexagon are also equal.

17. In the circle, inscribe a side $A C$ of an equilateral triangle and a side $A B$ of an equilateral pentagon. Then arc $B C$ is the difference between one-third and one-fifth of the circumference of the circle. That is, arc $B C=\frac{2}{15}$ of the circumference. Thus, if we bisect that arc at E, then lines $B E$ and $E C$ will each be a side of a regular 15 -gon.
18. Let $a=s_{1} b+r_{1}, b=s_{2} r_{1}+r_{2}, \ldots, r_{k-1}=s_{k+1} r_{k}$. Then r_{k} divides r_{k-1} and therefore also r_{k-2}, \ldots, b, a. If there were a greater common divisor of a and b, it would divide $r_{1}, r_{2}, \ldots, r_{k}$. Since it is impossible for a greater number to divide a smaller, we have shown that r_{k} is in fact the greatest common divisor of a and b.
19.

$$
\begin{aligned}
963 & =1 \cdot 657+306 \\
657 & =2 \cdot 306+45 \\
306 & =6 \cdot 45+36 \\
45 & =1 \cdot 36+9 \\
36 & =4 \cdot 9+0
\end{aligned}
$$

Therefore, the greatest common divisor of 963 and 657 is 9 .

$$
\begin{aligned}
4001 & =1 \cdot 2689+1312 \\
2689 & =2 \cdot 1312+65 \\
1312 & =20 \cdot 65+12 \\
65 & =5 \cdot 12+5 \\
12 & =2 \cdot 5+2 \\
5 & =2 \cdot 2+1
\end{aligned}
$$

Therefore, the greatest common divisor of 4001 and 2689 is 1.
20.

$$
\begin{gathered}
46=7 \cdot 6+4 \\
6=1 \cdot 4+23=7 \cdot 3+2 \\
4=2 \cdot 2
\end{gathered}
$$

Note that the multiples 7, 1, 2 in the first example equal the multiples 7, 1, 2 in the second.
21.

$$
\begin{aligned}
33 & =2 \cdot 12+9 \\
12 & =1 \cdot 9+3 \\
9 & =3 \cdot 3
\end{aligned}
$$

It follows that both ratios can be represented by the sequence $(2,1,3)$.
22. Since $1-x=x^{2}$, we have

$$
\begin{gathered}
1=1 \cdot x+(1-x)=1 \cdot x+x^{2} \\
x=1 \cdot x^{2}+\left(x-x^{2}\right)=1 \cdot x^{2}+x(1-x)=1 \cdot x^{2}+x^{3} \\
x^{2}=1 \cdot x^{3}+\left(x^{2}-x^{3}\right)=1 \cdot x^{3}+x^{2}(1-x)=1 \cdot x^{3}+x^{4}
\end{gathered}
$$

Thus $1: x$ can be expressed in the form $(1,1,1, \ldots)$.
23. If d is the diagonal of a square of side s, then the first division gives $d=1 s+r$. To understand the next steps, it is probably easiest to set $s=1$ and deal with the numerical values. Therefore, $d=\sqrt{2}$, and $r=\sqrt{2}-1$. Our next division gives $s=2 r+t$, where $t=3-2 \sqrt{2}$. Geometrically, if we lay off s along the diagonal, then r is the remainder $d-s$. Then draw a square of side r with part of the side of the original square being its diagonal. Note that if we now lay off r along the diagonal of that square, the remainder is t. In other words, r is the difference between the diagonal of a square of side s and s, while t is the difference between the diagonal of a square of side r and r. It follows that if one performs the next division in the process, we will get the same relationship. That is, $r=2 t+u$, where now u is the difference between the diagonal of a square of side t and t. Thus, this process will continue indefinitely and the ratio $d: s$ and be expressed as $(1,2,2,2, \ldots)$.
24. Since $a>b$, there is an integral multiple m of $a-b$ with $m(a-b)>c$. Let q be the first multiple of c that exceeds $m b$. Then $q c>m b \geq(q-1) c$, or $q c-c \leq m b<q c$. Since $c<m a-m b$, it follows that $q c \leq m b+c<m a$. But also $q c>m b$. Thus we have a multiple (q) of c that is greater than a multiple (m) of b, while the same multiple (q) of c is not greater than the same multiple (m) of a. Thus by definition 7 of Book V, $c: b>c: a$.
25. Let $A: B=C: D=E: F$. We want to show that $A: B=(A+C+E):(B+D+F)$. Take any equimultiples $m A$ and $m(A+C+E)$ of the first and third and any equimultiples $n B$ and $n(B+D+F)$ of the second and fourth. Since $m(A+C+E)=m A+m C+m E$, and since $n(B+D+F)=n B+n D+n F$, and since whenever $m A>n B$, we have $m C>n D$ and $m E>n F$, it follows that $m A>n B$ implies that $m(A+C+E)>n(B+D+F)$. Since a similar statement holds for equality and for "less than", the result follows from Eudoxus' definition. A modern proof would use the fact that $a_{1} b_{i}=b_{1} a_{i}$ for every i and then conclude that $a_{1}\left(b_{1}+b_{2}+\cdots+b_{n}\right)=b_{1}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$.
26. Given that $a: b=c: d$, we want to show that $a: c=b: d$. So take any equimultiples $m a, m b$ of a and b and also equimultiples $n c, n d$ of c and d. Now $m a: m b=a: b=$ $c: d=n c: n d$. Thus if $m a>n c$, then $m b>n d$; if $m a=n c$, then $m b=n d$; and if $m a<n c$, then $m b<n d$. Thus, by the definition of equal ratio, we have $a: c=b: d$.
27. In the diagram, let $D G=8, G E=4$, and $D H=6$. Connect $G H$ and draw $E F$ parallel to $G H$. Then $H F$ is equal to the fourth proportional x.

28. Let $A B=9$ and $B C=5$. Draw a circle with $A C$ as diameter and erect a perpendicular to $A C$ at B, meeting the circle at E. Then $B E$ is the desired length x.
29. Suppose the first of the equal and equiangular parallelograms has sides of length a and b while the second has sides of length c and d, each pair surrounding an angle equal to α. Since the area of a parallelogram is the product of the two sides with the sine of the included angle, we know that $a b \sin \alpha=c d \sin \alpha$. It follows that $a b=c d$ or that $a: c=d: b$, as desired. Conversely, if $a: c=d: b$ and the parallelograms are equiangular with angle α between each pair of given sides, then $a b=c d$ and $a b \sin \alpha=c d \sin \alpha$, so the parallelograms are equal. Euclid's proof is, of course, different from this modern one. Namely, if the two parallelograms are $P_{1}=A D B F$ and $P_{2}=B G C E$, with equal angles at B, Euclid places them so that $F B$ and $B G$ are in a straight line as are $E B$ and $B D$. He then completes the third parallelogram $P_{3}=F B E K$. Since $P_{1}=P_{2}$, we have $P_{1}: P_{3}=P_{2}: P_{3}$. But $P_{1}: P_{3}=D B: B E$, since $B F$ is common, and $P_{2}: P_{3}=B G: B F$, since $B E$ is common. Thus, $D B: B E=B G: B F$, the desired conclusion. The converse is proved by reversing the steps.

30. Suppose $a: b=f: g$ and suppose the numbers c, d, \ldots, e are the numbers in continued proportion between a and b. Let r, s, t, \ldots, u, v be the smallest numbers in the same ratio as a, c, d, \ldots, e, b. Then r, v are relatively prime and $r: v=a: b=f: g$. It follows that $f=m r, g=m v$ for some integer m and that the numbers $m s, m t, \ldots, m u$ are in the same ratio as the original set of numbers. Thus there are at least as many numbers in continued proportion between f and g as there were between a and b. Since the same argument works starting with f and g, it follows that there are exactly as many numbers in continued proportion between f and g as between a and b. Since there is no integer between n and $n+1$, it follows that there cannot be a mean proportional between any pair of numbers in the ratio $(n+1): n$.
31. The number $a b$ is the mean proportional between a^{2} and b^{2}.
32. The numbers $a^{2} b$ and $a b^{2}$ are the two mean proportionals between a^{3} and b^{3}.
33. If a^{2} measures b^{2}, then $b^{2}=m a^{2}$ for some integer m. Since every prime number which divides b^{2} must divide $m a^{2}$ and therefore must divide either m or a^{2}, it follows by counting primes that m must itself be a square. Thus $m=n^{2}$ and $b=n a$, so a measures b. Conversely, if a measures b, then $b=n a$ and $b^{2}=n^{2} a^{2}$, so a^{2} measures b^{2}.
34. Suppose m factors two different ways as a product of primes: $m=p q r \cdots s=p^{\prime} q^{\prime} r^{\prime} \cdots s^{\prime}$. Since p divides $p q r \cdots s$, it must also divide $p^{\prime} q^{\prime} r^{\prime} \cdots s^{\prime}$. By VII-30, p must divide one of the prime factors, say p^{\prime}. But since both p and p^{\prime} are prime, we must have $p=p^{\prime}$. After canceling these two factors from their respective products, we can then repeat the argument to show that each prime factor on the left is equal to a prime factor on the right and conversely.
35. One standard modern proof is as follows. Assume there are only finitely many prime numbers $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$. Let $N=p_{1} p_{2} p_{3} \cdots p_{n}+1$. There are then two possibilities. Either N is prime or N is divisible by a prime other than the given ones, since division by any of those leaves remainder 1 . Both cases contradict the original hypothesis, which therefore cannot be true.
36. We keep adding powers of 2 until we get a prime. After $1+2+4+8+16+32+64=127$, the next sums are $255,511,1023,2047,4095$, and 8191 . The first five of these are not prime (note that $2047=23 \times 89$). But 8191 is prime (check by dividing by all primes less than $\sqrt{8191})$. So the next perfect number is $8191 \times 4096=33,550,336$.
37. Since $B C$ is the side of a decagon, triangle $E B C$ is a 36-72-72 triangle. Thus $\angle E C D=$ 108°. Since $C D$, the side of a hexagon, is equal to the radius $C E$, it follows that triangle $E C D$ is an isosceles triangle with base angles equal to 36°. Thus triangle $E B D$ is a 36-72-72 triangle and is similar to triangle $E B C$. Therefore $B D: E C=E B: B C$ or $B D: C D=C D: B C$ and the point C divides the line segment $B D$ in extreme and mean ratio.
38. By exercise 37, if we set d to be the length of the side of a decagon, we have $(1+d): 1=$ $1: d$ or $d^{2}+d-1=0$. It follows that $d=\frac{\sqrt{5}-1}{2}$. The length p of the side of a pentagon is (p. 88) $p=\frac{1}{2} \sqrt{10-2 \sqrt{5}}$. It is then straightforward to show that $p^{2}=1^{2}+d^{2}$ as asserted.
39. We begin with a rectangle of sides x and y. We then lay off y along x, with the remainder being $x-y=7$. Divide the rectangle with sides 7 and y in half and move one half to the bottom. We then add the square of side $\frac{7}{2}$ to get a square of side $y+\frac{7}{2}=x-\frac{7}{2}$ with area $18+\left(\frac{7}{2}\right)^{2}=\frac{121}{4}$. Thus $y=\frac{11}{2}-\frac{7}{2}=2$ and $x=\frac{11}{2}+\frac{7}{2}=9$.
40. First, to solve the two equations, we set $x=a / y$ and substitute into $y^{2}-\alpha x^{2}=b$. After multiplying by y^{2}, we get the fourth degree equation $y^{4}-\alpha a^{2}=b y^{2}$. This is quadratic in y^{2}, so we can solve to get

$$
y^{2}=\frac{b+\sqrt{b^{2}+4 \alpha a^{2}}}{2}
$$

(Note that we only use the plus sign, since y^{2} must be positive.) Then

$$
y= \pm \sqrt{\frac{b+\sqrt{b^{2}+4 \alpha a^{2}}}{2}}
$$

We can then solve for x :

$$
x= \pm \sqrt{\frac{\sqrt{b^{2}+4 \alpha a^{2}}-b}{2 \alpha}} .
$$

(Of course, since a is assumed positive, we take the positive solution for x when we have the positive one for y, as well as the negative solution for x with the negative one for y.) The asymptotes of the hyperbola $x y=a$ are the lines $x=0$ and $y=0$, and these are the axes of the hyperbola $y^{2}-\alpha x^{2}=b$. Thus the asymptotes of one hyperbola are the axes of the other. (Note that the problem as stated is incorrect; it should say that "one hyperbola has its axes on the asymptotes of the other.")

