History of Mathematics

Math 395 Spring 2010 ©2010 Ron Buckmire

Fowler 310 MWF 10:30am - 11:25am http://faculty.oxy.edu/ron/math/395/10/

NAME:	QUIZ #1	TOTAL	/25
Provide the nar reasons for why	G-ANSWER QUESTION (10 points) me of a Greek mathematician you consider the greatest of y this particular mathematician should be considered the g out their life and achievements. WRITE LEGIBLY!		
Name of Grea	atest Greek Mathematician:		
	RT-ANSWER QUESTIONS (5 points) ether the following sentences are either TRUE or FALSE.		
A	_ Egyptians had more than one notation system for de	noting numbers	
В	_ Babylonians were able to solve quadratic equations.		
c	_ Euclid built upon the mathematical ideas of Archime	des.	
D	_ All Greek geometry was computed in no more than t	wo dimensions.	

E. _____ Hypatia discovered the secret of how to square the circle.

PART III: SHORT-ANSWER COMPUTATIONS (10 points)

Perform the following computations using techniques known to people in the relevant time period. **NO CALCULATORS ALLOWED**. Show all work and clearly indicate (i.e. circle) your answers. **1.** (2 points) Use the Egyptian doubling algorithm to compute the product of 31 by 25 = 31x25

2. (3 points) Express the number $76\frac{17}{24}$ in sexagesimal.

3. (3 points) Compute the product of $\beta\kappa$ and $\delta\mu$ and the product of $\kappa\beta$ and $\mu\delta$. Express the answer(s) in Greek.

4. (2 points) Use Diophantine notation to denote the polynomial $34x^4 - 5x^3 + 12x + 108$

		symbol	value	symbol	value	symbol	value
$x^2 := \Delta^{\Upsilon}$		α	1	ι	10	ρ	100
$x^3 := K^{\Upsilon}$		eta	2	κ	20	σ	200
		γ	3	λ	30	au	300
$x^4 := \Delta^{\Upsilon} \Delta$		δ	4	μ	40	v	400
$x^5 := \Delta K^{\Upsilon}$		ϵ	5	ν	50	ϕ	500
$x^6 := K^{\Upsilon}K$		G	6	ξ	60	χ	600
$x^{\circ} := K^{\circ}K$		ζ	7	0	70	ψ	700
$\Lambda := \text{minus}$	$\stackrel{\circ}{M} := \text{units}$	η	8	π	80	ω	800
	<i>1</i> 11 . GIII 0.5	$\overset{\cdot}{ heta}$	9	Q	90	\mathcal{N}	900