Applied Mathematics

Math 395 Spring 2009 ©2009 Ron Buckmire Fowler 301 Tue 3:00pm - 4:25pm http://faculty.oxy.edu/ron/math/395/09/

Class 11: Tuesday April 21

TITLE Uniform Solutions and Asymptotic Matching **CURRENT READING** Logan, Sections 2.2.2 and 2.2.3

SUMMARY

This week we will learn how to do asymptotic matching in order to obtain an exact solution to an ODE with a boundary layer that is valid inside and outside of the layer.

CONSIDER

Given the boundary value problem

$$\epsilon \frac{d^2 y}{dx^2} + (1+\epsilon)\frac{dy}{dx} + y = 0$$
, where $\epsilon \ll 1$ and $0 < x < 1$ with $y(0) = 0$, $y(1) = 1$. (1)

We have solved the outer problem for y_{outer} which is valid when ϵ is ignored, i.e. in the range where $\mathcal{O}(\epsilon) < x \leq 1$, so you can let $\epsilon = 0$ in the original problem given in (1). In that case the problem becomes

$$y'_{outer} + y_{outer} = 0, \quad y_{outer}(1) = 1 \tag{2}$$

Solving the IVP in (2) gives us the solution $y_{outer}(x) = e^{1-x}$.

However, in the boundary layer (inner solution) we have to do more work. We will rescale the independent variable x using the following:

$$\xi = \frac{x}{\delta(\epsilon)}$$
 and $y(\xi) = y(x) = y(\xi\delta(\epsilon))$ (3)

and plug in the new variables in (3) into the original equation in (1) produces

$$\frac{\epsilon}{\delta(\epsilon)^2} \frac{d^2 Y}{d\xi^2} + \frac{(1+\epsilon)}{\delta(\epsilon)} \frac{dY}{d\xi} + Y(\xi) = 0$$
(4)

There are four terms to do a dominant balancing of, $\frac{\epsilon}{\delta(\epsilon)^2}$, $\frac{1}{\delta(\epsilon)}$, $\frac{\epsilon}{\delta(\epsilon)}$ and 1.

EXAMPLE

Let's show that a consistent balancing only is available if $\delta(\epsilon) = \epsilon$ is chosen.

Choosing the scaling $\delta(\epsilon) = \epsilon$ and plugging back into (4) leads to

$$\epsilon Y'' + Y' + \epsilon Y' + \epsilon Y = 0 \tag{5}$$

which is an ODE that can e approximated using regular perturbation, so we set $\epsilon = 0$ and consider the leading order problem Y'' + Y' = 0, which has the solution

 $Y(\xi) = A + Be^{-\xi}$ but since this is the inner solution, it should satisfy the inner boundary condition of y = 0 at x = 0 which means that Y = 0 when $\xi = 0$ so that B = -A and the inner solution has the form $Y(\xi) = A(1 - e^{-\xi})$. If we want to convert back into x variables from ξ we know that $\xi = \frac{x}{\xi}$

To summarize, we know have

$$y_{inner}(x) = A(1 - e^{-x/\epsilon}), \text{ when } 0 \le x \le \mathcal{O}(\epsilon)$$

$$y_{outer}(x) = e^{1-x}, \text{ when } \mathcal{O}(\epsilon) < x \le 1$$

The process of finding the value of the constant involves asymptotic matching.

Asymptotic Matching

In order to find the unknown constant in the inner solution we need a matching condition. It turns out that this is

$$\lim_{x \to 0^+} y_{outer}(x) = \lim_{\xi \to \infty} y_{inner}(\xi) = M$$
(6)

where M is the matched value equal to the value of both limits.

If we do this for our problem above, we will see that M = e.

Exercise

Use the matching condition $\lim_{x\to 0^+} y_{outer}(x) = \lim_{\xi\to\infty} Y(\xi)$ to confirm the value for the unknown constant in y_{inner} .

Applied Mathematics

Uniform Expansion

To find a uniform expansion which is valid for the entire domain of interest (from $0 \le x \le 1$) instead of a piecewise defined function, we obtain $y_{uniform}(x)$ by adding together the inner and outer solutions and subtracting the common term, so

$$y_{uniform}(x) = y_{inner}(x) + y_{outer} - M \tag{7}$$

Thus $y_{uniform}(x) = e^{1-x} + e(1 - e^{-x/\epsilon}) - e = e^{1-x} - e^{1-x/\epsilon}$ is the function which satisfies (1) to leading order, in other words, as $\epsilon \to 0^+$.

EXAMPLE

Let's show that our uniform solution $y_u(x)$ satisfies the BVP and the ODE.

 $\epsilon \frac{d^2 y_u}{dx^2} + (1+\epsilon) \frac{dy_u}{dx} + y = 0, \qquad y_u(0) = 0, \quad y_u(1) = 1.$

Applied Mathematics

GROUPWORK

Let's try to come up with a unform expansion for the solution to

$$\epsilon y'' + y' = 2x, \quad y(0) = 1, \quad y(1) = 1, \qquad 0 < x < 1, 0 < \epsilon \ll 1$$
(8)

BONUS Homework Questions for Math 395: Applied Mathematics due TUE APR 28

For each of the problems, use singular perturbation methods to obtain a uniform approximate solutio to the following boundary value problems. Assume $0 < \epsilon \ll 1$ and 0 < x < 1.

GROUP 1: Logan, page 121, Question 1(a) (a) $\epsilon y'' + 2y' + y = 0$ y(0) = 0, y(1) = 1GROUP 2: Logan, page 121, Question 1(b) (b) $\epsilon y'' + y' + y^2 = 0$, y(0) = 1/4, y(1) = 1/2GROUP 3: Logan, page 121, Question 1(c) (c) $\epsilon y'' + (1 + x)y' = 1$, y(0) = 0, $y(1) = 1 + \ln(2)$