Numerical Analysis

Math 370 Fall 1998
MWF 11:30am - 12:25pm
(c) 1998 Ron Buckmire

Class 17: Monday October 14

SUMMARY Analyzing Iterative Methods
READING Burden \& Faires, 78-86

Asymptotic Rates of Convergence of Iterative Methods

If we have a sequence of approximations $\left\{p_{n}\right\}$ which converges to p and there exist positive constants α and λ so that

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then the sequence is said to converge to p with order α, with an asymptotic error constant λ. The method is said to be an " α order" method. How is this definition different from "big oh" and "little oh"?

We have considered \qquad iterative methods in this class so far...
Write them down below with their corresponding iterative step $p_{n}=g\left(p_{n-1}\right)$

Let's rank these in order of how fast they converge to the root, i.e. in asymptotic order.

Question

How can we prove this order? Can we determine the order of these methods analytically? can we do it experimentally? How???

Summary

In other words the iterative method is said to be of order α if one can show a relationship like $\left|e_{n+1}\right| \approx \lambda\left|e_{n}\right|^{\alpha}$

Example

Consider the two sequences p_{n} and q_{n} which both to converge to zero.
However, p_{n} converges linearly, while q_{n} converges quadratically.
Let's assume that the two sequences have the same asymptotic error constant of $\lambda=0.5$ and $p_{0}=1$. Use your calculator to generate the first 6 or so elements of each sequence and record these in the table below.

You should be able to come up with a formula which relates the n-th iterate to the initial guess (zeroth iterate) for both p_{n} and q_{n} and makes filling out the table easier....

Iterate n	Linear Convergence	Quadratic Convergence $q_{n}=$

Do you think it is a "big deal" whether a method is linearly convergent versus quadratically convergent?

Bisection Method

Derive the error formula for the bisection method and write it below. In other words, get an expression for e_{n+1} in terms of e_{n} and or n.

Therefore, Bisection is a \qquad method, with $\lambda=$ \qquad and $\alpha=$ \qquad Fixed Point Iteration
We shall derive the asymptotic rate of convergence for Functional Iteration. $p_{n+1}=g\left(p_{n}\right)$ and $e_{n+1}=p-p_{n+1}$ and $e_{n}=p-p_{n}$ therefore $p_{n+1}=g\left(p-e_{n}\right)=$
\qquad method with $\alpha=$ \qquad

Newton's Method

In a similar fashion, we shall derive the asymptotic rate of convergence for Newton's Method and fill-in the table below

Method	Order of Convergence	Error Formula
Bisection		
False Position	1.442	
Secant	$\frac{1+\sqrt{5}}{2} \approx 1.618$	
Newton's		
Picard		

NOTE: The above only apply for simple roots (i.e. a root of multiplicity 1).

Definition

A root r of an equation $f(r)=0$ has multiplicity m if and only if $0=f(r)=f^{\prime}(r)=\cdots=f^{(m-1)}(r)=0$ but $f^{(m)}(r) \neq 0$.

For roots of multiplicity $m>1$ Newton's Method has the relationship that $\left|e_{n+1}\right| \approx \frac{M-1}{M}\left|e_{n}\right|$

