Numerical Analysis

Math 370 Fall 1998 © **1998 Ron Buckmire** MWF 11:30am - 12:25pm Fowler 127

Class 7: Friday September 18

SUMMARY Rates of Convergence of Functions and Sequences **CURRENT READING** Burden & Faires (6th edition,) pages 36-37

Rates of Convergence of Functions

If we know that $\lim_{h\to 0} F(h) = L$ and $\lim_{h\to 0} G(h) = 0$ If a positive constant K exists with

 $|F(h) - L| \le KG(h),$ for sufficiently small h

then we write F(h) = L + O(G(h))

This can also be computed using the idea that F(h) = L + O(G(h)) if

$$\lim_{h \to 0} \frac{|F(h) - L|}{|G(h)|} = K$$

where K is some positive, finite constant.

Taylor Expansions

Another approach to figuring out rates of convergence of functions is to think about **Taylor's** Series Approximations

Recall that if you have a function f(x) near a point x = a and f(x) is infinitely-differentiable, you can write down

$$f(x) =$$

or you can truncate this series and write down

 $f(x) \approx$

<u>Exercise</u>

Write down the following Taylor Series Approximations (for small h):

 $\sin(h) \approx$

 $\cos(h) \approx$

 $e^h \approx$

 $(1+h)^p \approx$

Example

We can use this new way to re-do our previous exercises and how that $\cos(h) + \frac{h^2}{2} = 1 + O(h^4)$

What is the rate of convergence of $\sin(h^3)$ as $h \to 0$?