SUMMARY Introduction to Algorithms and Pseudocode
CURRENT READING Burden & Faires Sections 1.3

Machine Precision
There is a number ϵ_m such that $1 + \delta = 1$ whenever $\delta < \epsilon_m$
For exact arithmetic, ϵ_m is zero.
However, on a computer (calculator) ϵ_m is non-zero. We want to compute what it is for your calculator.

Exercise
Write down (in your own words) the meaning of the following terms:
ALGORITHM:

PSEUDOCODE:

Consider the following algorithm to compute ϵ_m, the machine precision:

```plaintext
epsilon = 1;
it = 0;
maxit = 100;
while it < maxit
    epsilon = epsilon/2;
    b = 1 + epsilon;
    if (b == 1)
        break;
    it = it + 1;
end
```

Example
Can we parse the above code in order to execute the given algorithm?

Exercise
Find the machine precision of your calculator.

GROUPWORK
Write an algorithm to compute the average of N numbers