Numerical Analysis

Math 370 Fall 1998
MWF 11:30am - 12:25pm
(c) 1998 Ron Buckmire

Class 4: Monday September 9

SUMMARY Examples of Round-Off Errors
CURRENT READING Burden \& Faires Sections 1.2 and 1.4
Loss of Significance
Consider the numbers $a=0.54617$ and $b=0.54601$. Compute $c=a \ominus b$ using 4-digit chopping and then 4 -digit rounding arithmetic.

Compute the relative error in c using chopping and rounding arithmetic

Example

Consider two numbers x and y which have k-digit decimal representations where p digits $(p<k)$ are the same. Let's write their decimal number representation $f l(x)$ and $f l(y)$ below Then let's write down the representation of $f l(f l(x)-f l(y)$

Round-off Errors in the Quadratic Formula

Recall that the common formula for the roots of a quadratic equation $a x^{2}+b x+c=0$ is

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Round-off error can wreak havoc with the numerical implementation of this formula. Consider

$$
x^{2}+62.10 x+1=0
$$

which has the approximate roots $x_{1}=-0.01610723$ and $x_{2}=-62.08390$
Because of the size of the parameters in the quadratic equation, b^{2} is much bigger than $4 a c$, so $\sqrt{b^{2}-4 a c}$ is very close to b
$b=\quad b^{2}=\quad 4 a c=\quad b^{2}-4 a c=$

GROUPWORK

Using 4-digit rounding arithmetic compute the first root x_{1}

What's the relative error in this calculation? Solution: change the formula for x_{1} so that we don't have to subtract b from $\sqrt{b^{2}-4 a c}$ Now, a new formula for $x_{1}=$

Use a similar new formula to compute x_{2} (using 4-digit precision) and compute the relative error in x_{2}

What's the problem?
Solution: Use the new formula for x_{1} when you have to subtract numbers which are similar in size, use the traditional formula for the other root.

The Ultimate Quadratic Formula

$$
q \equiv-\frac{1}{2}\left[b+\operatorname{sign}(b) \sqrt{b^{2}-4 a c}\right]
$$

where

$$
\operatorname{sign}(b)=\left\{\begin{array}{rl}
1 & b \geq 0 \\
-1 & b<0
\end{array}\right.
$$

and

$$
x_{1}=\frac{q}{a} \quad \text { and } x_{2}=\frac{c}{q}
$$

Machine Precision

There is a number ϵ_{m} such that $1+\delta=1$ whenever $\delta<\epsilon_{m}$ What is ϵ_{m} equal to in exact arithmetic?
How would you compute the machine precision of your calculator? Developan algorithm.
ANNOUNCEMENTS
Class is cancelled on Friday September 11.
Quiz 2 is due on Monday September 14 in class.

