Quiz 4

N um erical A nalysis

Name:		
Date:	_	
Tim e Begun:		
Tim e Ended:		

Friday O ctober 9 Ron Buckm ire

Topic : Root-Finding A lgorithm s

The idea behind this quiz is for you to apply your know ledge of the standard root finding techniques to a new method. This is a test of applying know ledge to deal with a new situation.

Instructions:

- 1. Once you open the quiz, you have as much time as you need to complete it, but record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. A fter completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determ ine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Wednesday October 14, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, _____, pledge m y honor as a hum an being and O ccidental student, that I have follow ed all the rules above to the letter and in spirit. 1. Consider a new m ethod of finding a root of an equation, called The Lazy N ew ton or "Fixed Slope" m ethod. This is sim ilar to N ew ton's M ethod except that instead of taking the derivative at EVERY step, one computes the derivative once at the point of the initial guess p_0 and uses only that derivative in every subsequent iteration.

The general form u la for the Lazy N ew ton m ethod is: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$

(a) [6 pts] Indicate on the graph of the function $f(x) = x^3 - 4$ below what the first few approximations to the root, p_1, p_2, p_3 will look like, using the Lazy N ew ton method, given that $p_0 = 4$. Make sure you indicate how you computed p_1, p_2 and p_3 .

(H IN T: Think about what approxim ations N ew ton 's M ethod w ould produce and then think about how Lazy N ew ton 's M ethod w ould be different.)

(b) [2 pts] Treat The Lazy N ew ton m ethod as just any old Picard Iteration. For the given function of $f(x) = x^3 - 4$ w ith $p_0 = \alpha$ w hat is the iterative function g(x) for the Lazy N ew ton m ethod?

(c) [2 pts] If you are told that the initial guess is $p_0 = \alpha$ derive a condition on α for which you are confident that the Lazy N ew ton m ethod w ill converge. (H IN T: w hat is the condition on g for which you know Picard Iteration w ill alw ays converge?)