Numerical Analysis

Math 370 Fall 2004 ©2004 Ron Buckmire

MWF 2:30 - 3:25pm Fowler North 5

Worksheet 18

SUMMARY Successive Over-Relaxation for Linear Systems **Matrix representation of iterative schemes for linear systems** We have written down the matrix implementation of Jacobi and Gauss-Seidel iteration in the form

$$\vec{x}_{k+1} = T\vec{x}_k + \vec{c}$$

and derived how T depends on A and \vec{c} depends on A and \vec{b} for each method.

Gauss-Seidel Iteration

$$\vec{x}_{k+1} = (D-L)^{-1}U\vec{x}_k + (D-L)^{-1}\vec{b}$$

Jacobi Iteration

$$\vec{x}_{k+1} = D^{-1}(L+U)\vec{x}_k + D^{-1}\vec{b}$$

Successive Over-Relaxation (SOR)

$$\vec{x}_{k+1} = (D - \omega L)^{-1} [\omega U + (1 - \omega) D] \vec{x}_k + (D - \omega L)^{-1} \vec{b}$$

Gauss-Seidel ends up being a special case of successive over-relaxation with $\omega = 1$. Spectral Radius

The spectral radius $\rho(A)$ of a $N \ge N$ matrix A is defined as $\rho(A) = max|\lambda|$, where λ is an eigenvalue of A.

Properties of the Spectral Radius

(a) ||A||₂ = √ρ(A^TA)
(b) ρ(A) ≤ ||A||, for any "natural matrix norm" (i.e. a norm which also applies to vectors)

The importance of the spectral radius of a matrix is that it allows us to say a lot about the convergence and rate of convergence of iterative schemes of the form $\vec{x}_{k+1} = T\vec{x}_k + \vec{c}$ **THEOREM**

The iterative scheme $\vec{x}_{k+1} = T\vec{x}_k + \vec{c}$ generates a sequence $\{\vec{x}_n\}$ which converges to the unique solution of $\vec{x} = T\vec{x} + \vec{c}$ for any initial guess \vec{x}_0 if and only if $\rho(T) < 1$. COROLLARY

If ||T|| < 1 for any natural matrix norm and c is a given vector then the iterative scheme $\vec{x}_{k+1} = T\vec{x}_k + \vec{c}$ converges to \vec{x} and the following error bound holds:

$$||\vec{x} - \vec{x}_k|| \le ||T||^k ||\vec{x}_0 - \vec{x}||$$

A rule of thumb is that

$$||\vec{x} - \vec{x}_k|| \approx \rho(T)^k ||\vec{x}_0 - \vec{x}||$$

Mo' Theorems

We can denote the matrices used by each particular iterative method below: SOR iteration uses $T_{\omega} = (D - \omega L)^{-1} [\omega U + (1 - \omega)D]$ Jacobi Iteration uses $T_J = D^{-1}(L + U)$ Gauss-Seidel uses $T_G = (D - L)^{-1}U$

Kahan Theorem

If $a_{ii} \neq 0$ for each i = 1, 2, ..., n then $\rho(T_{\omega}) \geq |\omega - 1|$. Therefor SOR will only converge if $0 < \omega < 2$.

Ostrowski-Reich Theorem

If A is a positive definite, tridiagonal matrix then $\rho(T_G) = \rho(T_J)^2 < 1$ and the optimal choice of ω is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}}$$

Positive Definite Matrix

A *n* by *n* matrix *A* is said to be **positive definite** if *A* is symmetric and if $x^T A x > 0$ for every *n*-dimensional column vector $x \neq 0$.

Example

Consider the system of equations

Let's try and solve this using Jacobi Iteration, Gauss-Seidel and optimal SOR. Use an initial guess of $(1,1,1)^T$. The exact solution is $(3,4,-5)^T$. Use MATLAB as a tool to assist you. You will want to use **sor.m** in the **linalg** directory of the NMM toolbox.

You will need to find the spectral radius of the system, and determine whether the matrix is positive definite.