Worksheet 17

SUMMARY Analysis of Iterative Methods for Solving Linear Systems
Consider the system

$$
\begin{aligned}
4 x-y+z & =7 \\
4 x-8 y+z & =-21 \\
-2 x+y+5 z & =15
\end{aligned}
$$

We can re-write these equations as

$$
x^{(k+1)}=\frac{7+y^{(k)}-z^{(k)}}{4}, \quad y^{(k+1)}=\frac{21+4 x^{(k)}+z^{(k)}}{8}, \quad z^{(k+1)}=\frac{15+2 x^{(k)}-y^{(k)}}{5}
$$

OR
$x^{(k+1)}=\frac{7+y^{(k)}-z^{(k)}}{4}, \quad y^{(k+1)}=\frac{21+4 x^{(k+1)}+z^{(k)}}{8}, \quad z^{(k+1)}=\frac{15+2 x^{(k+1)}-y^{(k+1)}}{5}$
Which of these schemes represents Gauss-Seidel Iteration and which represents Jacobi Iteration?

Can you generalize these schemes if the linear system looks like:

$$
\begin{aligned}
a_{11} x+a_{12} y+a_{13} z & =b_{1} \\
a_{21} x+a_{22} y+a_{23} z & =b_{2} \\
a_{31} x+a_{32} y+a_{33} z & =b_{3}
\end{aligned}
$$

Write down the general iterative formula for Jacobi Iteration on a $3 x 3$ system here:

Write down the general iterative formula for Gauss-Seidel Iteration on a $3 x 3$ system here

Let's try to really generalize these schemes when applied to a system of n equations in n variables.

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\ldots+a_{3 n} x_{n} & =b_{3} \\
\vdots & =\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

Write down the general form of the iterative scheme for Jacobi Iteration using $a_{i j}$

We can use information from Jacobi Iteration to derive the scheme for Gauss-Seidel Iteration

Matrix representation of iterative schemes for linear systems

We have written down the iterative scheme implementation of Jacobi and Gauss-Seidel iteration but the more useful way to think about these schemes is using the matrix representation of the generic iterative scheme

$$
\underline{x}^{(k+1)}=T \underline{x}^{(k)}+\underline{c}
$$

and we'll derive how T depends on A and \vec{c} depends on A and \vec{b} for each method.
We will write the matrix A as the sum of three matrices D (diagonal matrix), L (lower triangular) and U (upper triangular) such that

$$
A=D-L-U
$$

For example, write down D, L and U for the original linear system on page 1

The system $A \underline{x}=\underline{b}$ can be written as

$$
\begin{aligned}
(D-L-U) \underline{x} & =\underline{b} \\
D \underline{x} & =L \underline{x}+U \underline{x}+\underline{b} \\
\underline{x} & =D^{-1}(L+U) \underline{x}+D^{-1} \underline{b} \\
\underline{x}^{(k+1)} & =D^{-1}(L+U) \underline{x}^{(k)}+D^{-1} \underline{b}
\end{aligned}
$$

Another choice is

$$
\begin{aligned}
(D-L-U) \underline{x} & =\underline{b} \\
(D-L) \underline{x} & =U \underline{x}+\underline{b} \\
\underline{x} & =(D-L)^{-1} U \underline{x}+(D-L)^{-1} \underline{b} \\
\underline{x}^{(k+1)} & =(D-L)^{-1} U \underline{x}^{(k)}+(D-L)^{-1} \underline{b}
\end{aligned}
$$

Which of the above schemes represents Jacobi Iteration and which represents Gauss-Seidel? How can you tell?

Matlab implementation
We have looked at methods for finding iterative solutions of systems of linear equations. The methods we know are Jacobi Iteration (jacobi.m) and Gauss-Seidel (gseidel.m) which can be found in the Math Courses/Math370/2004/linalg.

Use Gauss-Seidel and Jacobi Iteration to solve the linear system

$$
\begin{aligned}
2 x+8 y-z & =11 \\
5 x-y+z & =10 \\
-x+y+4 z & =3
\end{aligned}
$$

with different initial guesses. Do you EXPECT the system as currently constituted to converge using Jacobi and/or Gauss-Seidel Iteration? (HINT: recall the conditions on diagonal dominance for convergence of iterative methods to the solution to $A \underline{x}=\underline{b}$.)

What could you do to change the system so that you could use the iterative methods to generate a solution to the system?

