Numerical Analysis

Worksheet 10

SUMMARY Introduction to Root Finding
READING Recktenwald, 6.1.1 (240-250)

Example

Consider a ball constructed of wood which has a density of $\rho=0.638$ grams per cubic cm and the radius is $r=10 \mathrm{~cm}$. How much of the ball will be submerged when it is in water (with unit density)? Let x be the current depth of the sphere. The radius of the amount of the spherical section under water is obtained using Pythagoras' theorem with $r-x$ and r
$M_{w}=$ Mass of water displaced $=1 \cdot \int_{0}^{d} \pi\left(r^{2}-(r-x)^{2}\right) d x$
$M_{b}=$ Mass of ball $=4 \pi r^{3} \rho / 3$
What's the equation which must be solved to find d, the distance below the surface the ball will float? (Produce an equation for d of the form $f(d)=0$ with d being the only letter present.)

Question

How would you solve this equation for d ?

Root-Finding

We will be looking at algorithms for the solution of equations of one variable, i.e. equations of the form $f(x)=0$. This is often referred to as finding the roots of the equation $f(x)=0$ or finding the zeroes of the function $f(x)$.

Bracketing The Root

How do we know where the roots of a function $f(x)$ are? How can we "bracket" a zero of $f(x)$?

The Matlab function brackplo will do this for us. Go to the computers and run brackplo on the function you need to find zeroes of to find d. I have made a function called sphere.m which you can use to help you. What do you see? How many roots are there? What range did you ask brackplo to search on?

The Bisection Method of Bolzano

The bisection algorithm produces a sequence of approximations $\left\{p_{n}\right\}$ to the zero of the function $f(x)$ where $p_{n}=a_{n}+\frac{b_{n}-a_{n}}{2}=\frac{a_{n}+b_{n}}{2}$ and the n-th bracket is described by $\left[a_{n}, b_{n}\right]$ Write down the Bisection Algorithm in pseudocode here:

bisect.m

In the NMM Toolbox, we have an implementation of the bisection algorithm in bisect.m. Use Matlab to find the value of d which we have been looking for which tells us how much of the pine sphere is submerged.
$d=$

General Root-Finding Algorithm

1. Plot the function, in order to get an initial guess for the root and to check for problems
2. Select an initial guess [or bracket]
3. Iteratively refine your initial guess
4. Decide you are "converged" (If NO, Go To 3.)
5. Stop

demobisect.m

There is another implementation of Bisection Algorithm in s:/math courses/math 370/2004/ .
Modify this m-file to find the root of $f(d)=2552-30 d^{2}+d^{3}$
How many steps does it take to converge? Using what initial bracket?

Analyzing Convergence of Bisection

Write down an expression for the size of $\left|b_{n}-a_{n}\right|$ which depends on $b-a$ and the n-th iterate (note: $\left|b_{0}-a_{0}\right|=b-a$)

Solve this formula for n.

Try and predict how many iterations it will take Bisection to find the zero of $f(x)=\log (x)-5+x$ on the interval $[1,9]$ to 5 decimal places

Go to the computer and see how many iterations demobisect.m actually takes to converge. Explain.

Convergence Criteria

There are a number of different ways to consider that a method has "converged" There is convergence criteria on $f(x)$ and convergence criteria on x

Question

There is also relative convergence versus absolute convergence. Which do you think is the "best" method of assessing convergence?

