# Numerical Analysis 

Math 370 Fall 2004
MWF 2:30-3:25pm
(C)2004 Ron Buckmire

Fowler North 5

## Worksheet 3: Friday September 10

SUMMARY Sequences, Order of Convergence and "big Oh"
CURRENT READING Recktenwald (Sec 5.3.1)

## Convergence of a Sequence

In a large number of numerical problems we will get a sequence of approximate answers to the single real number which is the exact solution of the problem we are looking at (e.g., a definite integral, a particular value of a solution to an initial value problem, a root of a function, etc.) We often write this sequence as $x_{1}, x_{2}, x_{3}, \ldots$ and the limit as $L$ or $x_{\infty}$ and denote this by

$$
\lim _{n \rightarrow \infty} x_{n}=L
$$

Can you recall the formal definition of the above limit of a sequence?

In English, write down what the definition means to you, in your own words.

Draw a picture representing this definition:

As we solve problems numerically, we often generate a sequence of approximations $x_{1}, x_{2}$, $x_{3}$ which approach an exact answer $x_{\infty}$.
We are interested in looking at rate of convergence of sequences. Often we want to compare how fast one sequence is converging to its limit relative to another convergent sequence. This is a convenient way of describing and evaluating solution algorithms.

## Definition

Suppose we know that a sequence $\left\{\beta_{n}\right\}$ converges to $\beta$ and $\left\{\alpha_{n}\right\}$ converges to $\alpha$.
The sequence $\left\{\alpha_{n}\right\}$ is said to converge to $\alpha$ at the rate of convergence $O\left(\beta_{n}\right)$ if there exists a positive constant $K$ such that

$$
\left|\alpha_{n}-\alpha\right| \quad K\left|\beta_{n}-\beta\right|, \quad \text { for large } n
$$

Another way of thinking of this is to say that

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{\left|\beta_{n}-\beta\right|}=K, \quad \text { where } 0<K<\infty
$$

This is often written as $\alpha_{n}=\alpha+O\left(\beta_{n}\right)$
We read this (in English) as :

Similarly, we say that $\left\{\alpha_{n}\right\}$ is $o\left(\beta_{n}\right)$ if

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{\left|\beta_{n}-\beta\right|}=0
$$

and that $\left\{\alpha_{n}\right\}$ is equivalent to $\left\{\beta_{n}\right\}$ (this is written $\alpha_{n} \sim \beta_{n}$ ) if

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{\left|\beta_{n}-\beta\right|}=1
$$

For most practical purposes, the limiting values $\alpha$ and $\beta$ are zero and $\beta_{n}$ sequence we deal with has the form $1 / n^{p}$.

## Example

Show that $x_{n}=\frac{n+1}{n^{2}}$ is $O\left(\frac{1}{n}\right)$ and is also $o(1)$.
What does this result tell you about the meaning and meaningfulness of saying $x_{n}=o(1)$ ?

## Grouphork

What is the order of convergence of $t_{n}=\frac{1}{n \ln n}$ ?

## More Examples

Find the order of convergence of the following sequences as $n \rightarrow \infty$

1. $x_{n}=5 n^{2}+9 n^{3}+1$
2. $x_{n}=e^{-n}+5 / n$
3. $x_{n}=\sqrt{n+3}$
4. $x_{n}=1 / \ln n$
