Numerical Analysis

Math 370 Fall 2004
MWF 2:30-3:25pm
(C)2004 Ron Buckmire

Fowler North 3

Class 2: Wednesday September 8

SUMMARY Round-off Error and The Significance Floating Point Arithmetic CURRENT READING Recktenwald 5.2

k-th digit Chopping

In this case all the digits after d_{k} are ignored ("chopped off")

k-th digit Rounding

In this case if the value of $d_{k+1} \geq 5$ then d_{k} is replaced by $d_{k}+1$

GROUPWORK

Show that the expression involving k which gives you an upper bound for the relative error involved in using chopping arithmetic is $\epsilon_{\text {rel }}=10^{-k+1}$

It can also be shown that a bound for the relative error involved in using rounding arithmetic is half that for chopping, $\epsilon_{r e l}=0.5 \times 10^{-k+1}=5 \times 10^{-k}$.
Round-off Errors in the Quadratic Formula
Recall that the common formula for the roots of a quadratic equation $a x^{2}+b x+c=0$ is

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Round-off error can wreak havoc with the numerical implementation of this formula. Consider

$$
x^{2}+62.10 x+1=0
$$

which has the approximate roots $x_{1}=-0.01610723$ and $x_{2}=-62.08390$
Because of the size of the parameters in the quadratic equation, b^{2} is much bigger than $4 a c$, so $\sqrt{b^{2}-4 a c}$ is very close to b. $a=1, b=62.10, c=1$
$b^{2}=$

$$
4 a c=
$$

$$
b^{2}-4 a c=
$$

GROUPWORK

Using 4-digit rounding arithmetic compute the first root x_{1}

What's the relative error in this calculation?

Solution: change the formula for x_{1} so that we don't have to subtract b from $\sqrt{b^{2}-4 a c}$ Now, a new formula for $x_{1}=$

Use a similar new formula to compute x_{2} (using 4-digit precision) and compute the relative error in x_{2}

What's the problem?
Solution: Use the new formula for x_{1} when you have to subtract numbers which are similar in size, use the traditional formula for the other root.

The Ultimate Quadratic Formula

$$
q \equiv-\frac{1}{2}\left[b+\operatorname{sign}(b) \sqrt{b^{2}-4 a c}\right]
$$

where

$$
\operatorname{sign}(b)=\left\{\begin{array}{rl}
1 & b \geq 0 \\
-1 & b<0
\end{array}\right.
$$

and

$$
x_{1}=\frac{q}{a} \quad \text { and } x_{2}=\frac{c}{q}
$$

