Overview

Unavoidable Errors in Computing

Gerald W. Recktenwald
Department of Mechanical Engineering
Portland State University gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with Matlab: Implementations and Applications, by Gerald W. Recktenwald, (c) 2001, Prentice-Hall, Upper Saddle River, NJ. These slides are (c) 2001 Gerald W. Recktenwald. The PDF version of these slides may be downloaded or stored or printed only for noncommercial, educational use. The repackaging or sale of these slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material for the book, can be found at www. prenhall.com/recktenwald.

- Digital representation of number
\triangleright Size limits
\triangleright Resolution limits
\triangleright The floating point number line
- Floating point arithmetic
\triangleright roundoff
\triangleright machine precision
- Implications for routine computation
\triangleright Use "close enough" instead of "equals"
\triangleright loss of significance for addition
\triangleright catastrophic cancellation for subtraction
- Truncation error
\triangleright Demonstrate with Taylor series
\triangleright Order Notation

What's going on here?

Spontaneous generation of an insignificant digit:

```
>> format long e % display lots of digits
>> 2.6 + 0.2
ans =
            2.800000000000000e+00
    >> ans + 0.2
    ans =
            3.000000000000000e+00
    >> ans + 0.2
    ans =
            3.200000000000001e+00
    >> 2.6 + 0.6
    ans =
            3.200000000000000e+00
```

- Integers can be exactly represented by base 2
- Typical size is 16 bits
- $2^{16}=65536$ is largest 16 bit integer
- $[-32768,32767]$ is range of 16 bit integers in twos complement notation
- 32 bit and larger integers are available

Note: All standard mathematical calculations in Matlab use floating point numbers. Describing binary storage of integers is a prelude to discussing the binary storage of non-integers.

Expert's Note: The built-in int8, int16, int32, uint8, uint16, and uint32 classes are meant as a means of reducing data storage costs.
page 4

Digital Storage of Non-integer Numbers (1)

- Use normalized scientific notation:

$$
123.456 \quad \longrightarrow \quad 0.123456 \times 10^{3}
$$

- Fixed number of bits are allocated to each number
\triangleright single precision uses 32 bits per floating point number
\triangleright double precision uses 64 bits per floating point number
- Total number of bits are split into separate storage for the mantissa and exponent
\triangleright single precision: 1 sign bit, 23 bit mantissa, 8 bit exponent
\triangleright double precision: 1 sign bit, 52 bit mantissa, 11 bit exponent

Numeric values with non-zero fractional parts are stored as floating point numbers.

All floating point values are represented with a normalized scientific notation.

Example:

$$
12.3792=\underbrace{0.123792}_{\text {mantissa }} \times 10^{2}
$$

A double precision (64 bit) floating point number can be schematically represented as

Floating point values have a fixed number of bits allocated for storage of the mantissa and a fixed number of bits allocated for storage of the exponent.

Two common precisions are provided in numeric computing languages

Precision	Bits for mantissa	Bits for exponent
Single	23	8
Double	53	11

Floating Point mantissa expressed in powers of $\frac{1}{2}$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{0}=1 \quad \text { not used } \\
& \left(\frac{1}{2}\right)^{1}=0.5 \\
& \left(\frac{1}{2}\right)^{2}=0.25 \\
& \left(\frac{1}{2}\right)^{3}=0.125 \\
& \left(\frac{1}{2}\right)^{4}=0.0625
\end{aligned}
$$

:

Example: Binary mantissa for $x=0.8125$
Apply Algorithm 5.1

k	2^{-k}	b_{k}	$r_{k}=r_{k-1}-b_{k} 2^{-k}$
0	NA	NA	0.8125
1	0.5	1	0.3125
2	0.25	1	0.0625
3	0.125	0	0.0625
4	0.0625	1	0.0000

Therefore, the binary mantissa for 0.8125 is (exactly) $(1101)_{2}$

Digital Storage of Non-integer Numbers (8)

Consequences

- Limiting the number of bits allocated for storage of the exponent means that there are upper and lower limits on the magnitude of floating point numbers
- Limiting the number of bits allocated for storage of the mantissa means that there is a limit to the precision (number of significant digits) for any floating point number.
- Most real numbers cannot be stored exactly (they do not exist on the floating point number line)
\triangleright Integers less than 2^{52} can be stored exactly. Try

$$
\begin{aligned}
& \gg \mathrm{x}=2^{\wedge} 51 \\
& \gg \mathrm{~s}=\operatorname{dec} 2 \operatorname{bin}(\mathrm{x}) \\
& \gg \mathrm{x} 2=\operatorname{bin} 2 \operatorname{dec}(\mathrm{~s}) \\
& \gg \mathrm{x} 2-\mathrm{x}
\end{aligned}
$$

\triangleright Numbers with 15 (decimal) digit mantissas that are the exact sum of powers of $(1 / 2)$ can be stored exactly

Example: Binary mantissa for $x=0.1$
Apply Algorithm 5.1

k	2^{-k}	b_{k}	$r_{k}=r_{k-1}-b_{k} 2^{-k}$
0	NA	NA	0.1
1	0.5	0	0.1
2	0.25	0	0.1
3	0.125	0	0.1
4	0.0625	1	$0.1-0.0625=0.0375$
5	0.03125	1	$0.0375-0.03125=0.00625$
6	0.015625	0	0.00625
7	0.0078125	0	0.00625
8	0.00390625	1	$0.00625-0.00390625=0.00234375$
9	0.001953125	1	$0.0234375-0.001953125=0.000390625$
10	0.0009765625	0	0.000390625
\vdots	\vdots		

Therefore, the binary mantissa for 0.1 is $(000110011 \ldots)_{2}$.

The decimal value of 0.1 cannot be represented by a finite number of binary digits.

Commercial software for symbolic computation

- Derive ${ }^{\mathrm{TM}}$
- MACSYMA ${ }^{\text {TM }}$
- Maple ${ }^{\mathrm{TM}}$
- Mathematica ${ }^{\text {TM }}$

Symbolic calculations are exact. No rounding occurs because symbols can be manipulated without substituting numerical values.

Symbolic versus Numeric Calculation (2)

Example: Evaluate $f(\theta)=1-\sin ^{2} \theta-\cos ^{2} \theta$
Numerical computation in Matlab:

```
>> theta = 30*pi/180; % must assign theta before it is used
>> f = 1 - sin(theta)^2 - cos(theta)^2
f =
    -1.1102e-16
```

f is close to, but not exactly equal to zero because of roundoff. Also note that f is a single value, not a formula.

Symbolic versus Numeric Calculation (3)

Symbolic computation using the Symbolic Math Toolbox in Matlab

```
>> t = sym('t') % declare t as a symbolic variable
    t =
*
>> f = 1- sin(t)^2 - cos(t)^2 % create a symbolic expression
f =
1-\operatorname{sin}(t)^2-\operatorname{cos}(t)^2
>> simplify(f) % ask Maple to make algebraic simplifications
f =
```

In the symbolic computation, f is exactly zero for any value of t. There is no roundoff error in symbolic computation.

Numerical Arithmetic

Numerical values have limited range and precision. Values created by adding, subtracting, multiplying, or dividing floating point values will also have limited range and precision.

Quite often, the result of an arithmetic operation between two floating point values cannot be represented as another floating point value.
format long e
> $u=29 / 13$
$\mathrm{u}=$
$2.230769230769231 e+00$
$\gg \mathrm{v}=13 * \mathrm{u}$
$\mathrm{v}=$
29
>> v-29
ans $=$
0
Two rounding errors are made in sequence: (1) during computation and storage of u, and (2) during computation and storage of v . Fortuitously, the combination of rounding errors produces the exact result.

Floating Point Arithmetic in Matlab (1)

```
>> x = 29/1300
x =
    2.230769230769231e-02
>> y = 29 - 1300*x
y =
    3.552713678800501e-015
```

In exact arithmetic, the value of y should be zero.
The roundoff error occurs when x is stored. Since 29/1300 cannot be expressed with a finite sum of the powers of $1 / 2$, the numerical value stored in x is a truncated approximation to $29 / 1300$.

When y is computed, the expression $1300 * x$ evaluates to a number slightly different than 29 because the bits lost in the computation and storage of x are not recoverable.

Roundoff in Quadratic Equation (2)

Compute roots with four digit arithmetic

$$
\begin{aligned}
\sqrt{b^{2}-4 a c} & =\sqrt{(-54.32)^{2}-0.4000} \\
& =\sqrt{2951-0.4000} \\
& =\sqrt{2951} \\
& =54.32
\end{aligned}
$$

Use $x_{1,4}$ to designate the first root computed with four-digit arithmetic:

$$
\begin{align*}
x_{1,4} & =\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \tag{i}\\
& =\frac{+54.32+54.32}{2.000} \tag{ii}\\
& =\frac{108.6}{2.000} \tag{iii}\\
& =54.30
\end{align*}
$$

(iv)
(See Example 5.3 in the text)
The roots of

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

are

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{2}
\end{equation*}
$$

Consider

$$
\begin{equation*}
x^{2}+54.32 x+0.1=0 \tag{3}
\end{equation*}
$$

which has the roots (to eleven digits)

$$
x_{1}=54.3218158995, \quad x_{2}=0.0018410049576
$$

Note that $b^{2} \gg 4 a c$

$$
b^{2}=2950.7 \gg 4 a c=0.4
$$

Roundoff in Quadratic Equation (3)

Using four-digit arithmetic the second root, $x_{2,4}$, is

$$
\begin{align*}
x_{2,4} & =\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{+54.32-54.32}{2.000} \tag{i}\\
& =\frac{0.000}{2.000} \tag{ii}\\
& =0, \tag{iii}
\end{align*}
$$

An error of 100 percent!
The poor approximation to $x_{2,4}$ is caused by roundoff in the calculation of $\sqrt{b^{2}-4 a c}$. This leads to the subtraction of two equal numbers in line (i).

A solution: rationalize the numerators of the expressions for the two roots:

$$
\begin{align*}
x_{1} & =\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\left(\frac{-b-\sqrt{b^{2}-4 a c}}{-b-\sqrt{b^{2}-4 a c}}\right) \tag{4}\\
& =\frac{2 c}{-b-\sqrt{b^{2}-4 a c}}, \tag{5}\\
x_{2} & =\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\left(\frac{-b+\sqrt{b^{2}-4 a c}}{-b+\sqrt{b^{2}-4 a c}}\right) \tag{6}\\
& =\frac{2 c}{-b+\sqrt{b^{2}-4 a c}} \tag{7}
\end{align*}
$$

Roundoff in Quadratic Equation (6)

Repeat the calculation of $x_{1,4}$ with the new formula

$$
\begin{align*}
x_{1,4} & =\frac{2 c}{-b-\sqrt{b^{2}-4 a c}} \\
& =\frac{0.2000}{+54.32-54.32} \tag{i}\\
& =\frac{0.2000}{0} \tag{ii}\\
& =\infty .
\end{align*}
$$

Limited precision in the calculation of $\sqrt{b^{2}+4 a c}$ leads to a catastrophic cancellation error in step (i)

Now use Equation (7) to compute the troublesome second root with four digit arithmetic

$$
\begin{aligned}
x_{2,4} & =\frac{2 c}{-b+\sqrt{b^{2}-4 a c}} \\
& =\frac{0.2000}{+54.32+54.32} \\
& =\frac{0.2000}{108.6} \\
& =0.001842 .
\end{aligned}
$$

The result is in error by only 0.05 percent.
The two formulations for $x_{2,4}$ are algebraically equivalent. The difference in the computed result is due to roundoff alone

Roundoff in Quadratic Equation (7)

A robust solution is to use a formula that takes the sign of b into account in a way that prevents catastrophic cancellation.

The ultimate quadratic formula:

$$
q \equiv-\frac{1}{2}\left[b+\operatorname{sign}(b) \sqrt{b^{2}-4 a c}\right]
$$

where

$$
\operatorname{sign}(b)= \begin{cases}1 & \text { if } b \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

Then roots to quadratic equation are

$$
x_{1}=\frac{q}{a} \quad x_{2}=\frac{c}{q}
$$

Summary

- Finite-precision causes roundoff in individual calculations
- Effects of roundoff accumulate slowly
- Subtracting nearly equal numbers leads to severe loss of precision. A similar loss of precision occurs when two numbers of very different magnitude are added.
- Since roundoff is inevitable, solution is to create better algorithms

For addition: The errors in

$$
c=a+b \quad \text { and } \quad c=a-b
$$

will be large when $a \gg b$ or $a \ll b$.

Consider $c=a+b$ with $a=x . x x x \ldots \times 10^{0}$,
$b=y . y y y \ldots \times 10^{-8}$, where x and y are decimal digits.
Assume for convenience of exposition that $z=x+y<10$.

The most significant digits of a are retained, but the least significant digits of b are lost because of the mismatch in magnitude of a and b.

For subtraction: The error in

$$
c=a-b
$$

will be large when $a \approx b$.

Consider $c=a-b$ with

$$
\begin{aligned}
a & =x \cdot x x x x x x x x x x x 1 \text { ssssss } \\
b & =x \cdot x x x x x x x x x x x 0 t t t t t t
\end{aligned}
$$

where x, y, s and t are decimal digits. The digits sss \ldots and $t t t \ldots$ are lost when a and b are stored in double-precision, floating point format.

Evaluate $a-b$ in floating point arithmetic:

$$
\begin{aligned}
& \overbrace{\mathrm{x} \cdot \mathrm{xxx} \mathrm{xxxx} \mathrm{xxxx} \mathrm{1}}^{\text {available precision }} \\
& -\quad 0.000000000001 \underbrace{\text { uuuu uuuu uuuuu }}_{\text {unassigned digits }}
\end{aligned}
$$

The result has only one significant digit. Values for the uuuu digits are not necessarily zero. The absolute error in the result is small compared to either a or b. The relative error in the result is large because ssssss $-t t t t t t \neq$ uuuuuu (except by chance).

Catastrophic Cancellation Errors (4)

Summary

- Occurs in addition: $\alpha+\beta$ when $\alpha \gg \beta$ or $\alpha \ll \beta$
- Occurs in subtraction: $\alpha-\beta$ when $\alpha \approx \beta$
- Error caused by a single operation (hence the term "catastrophic") not a slow accumulation of errors.
- Can often be minimized by algebraic rearrangement of the troublesome formula. (Cf. improved quadratic formula.)

Machine Precision (2)

Algorithm for Computing Machine Precision

```
```

 epsilon = 1;
    ```
```

 epsilon = 1;
 it = 0;
 it = 0;
 maxit = 100;
 maxit = 100;
 while it < maxit
 while it < maxit
 epsilon = epsilon/2;
 epsilon = epsilon/2;
 b = 1 + epsilon;
 b = 1 + epsilon;
 if b == 1
 if b == 1
 break;
 break;
 end
 end
 it = it + 1;
 it = it + 1;
 end
    ```
```

 end
    ```
```

The magnitude of roundoff errors is quantified by machine precision ε_{m}.

There is a number, ε_{m} such that

$$
1+\delta=1
$$

whenever $\delta<\varepsilon_{m}$.
In exact arithmetic, ε_{m} is identically zero.
Matlab uses double precision (64 bit) arithmetic. The built-in variable eps stores the value of ε_{m}.

$$
\mathrm{eps}=2.2204 \times 10^{-16}
$$

Implications for Routine Calculations

- Floating point comparisons should involve "close enough" instead of exact equality
- Terminate iterations when subsequent values are "close enough".
- Express "close" in terms of
\triangleright absolute difference, or
\triangleright relative difference

Don't ask "is x equal to y ".
if $x==y$
\% Don't do this
end

Instead ask, "are x and y 'close enough' in value"
if abs(x-y) < tol
end
"Close enough" can be measured with either absolute error or relative error, or both

Let

$$
\begin{aligned}
& \alpha=\text { some exact or reference value } \\
& \widehat{\alpha}=\text { some computed value }
\end{aligned}
$$

Absolute error

$$
E_{\mathrm{abs}}(\widehat{\alpha})=|\widehat{\alpha}-\alpha|
$$

Relative error

$$
E_{\mathrm{rel}}(\widehat{\alpha})=\frac{|\widehat{\alpha}-\alpha|}{\left|\alpha_{\mathrm{ref}}\right|}
$$

Often we choose $\alpha_{\text {ref }}=\alpha$ so that

$$
E_{\mathrm{rel}}(\widehat{\alpha})=\frac{|\widehat{\alpha}-\alpha|}{|\alpha|}
$$

Absolute and Relative Error (2)

Example: Approximating $\sin (x)$ for small x
Since

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

we can approximate $\sin (x)$ with

$$
\sin (x) \approx x
$$

for small enough $x<1$

The absolute error in this approximation is

$$
E_{\mathrm{abs}}=x-\sin (x)=\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\ldots
$$

And the relative error is

$$
E_{\mathrm{abs}}=\frac{x-\sin (x)}{\sin (x)}=\frac{x}{\sin (x)}-1
$$

Absolute and Relative Error (3)

Plot relative and absolute error in approximating $\sin (x)$ with x.

Although the absolute error is relatively flat around $x=0$, the relative error grows more quickly. The relative error reflects the fact that the absolute value of $\sin (x)$ is small near $x=0$.

An iteration generates a sequence of scalar values $x_{k}, k=1,2,3, \ldots$. The sequence converges to a limit ξ if

$$
\left|x_{k}-\xi\right|<\delta, \quad \text { for all } k>N
$$

where δ is a small.
In practice, the test is expressed as

$$
\left|x_{k+1}-x_{k}\right|<\delta, \quad \text { when } k>N .
$$

Iteration termination (3)

Relative convergence criterion

In words:

$$
\text { Iterate until }\left|\frac{x-x_{\text {old }}}{x_{\text {old }}}\right|<\delta_{r}
$$

where δ_{r} is the absolute convergence tolerance.

In Matlab:

```
x = ...
% initialize
xold = ...
while abs((x-xold)/xold) > deltar
    xold = x;
    update x
end
```


Absolute convergence criterion

In words:
Iterate until $\left|x-x_{\text {old }}\right|<\Delta_{a}$
where Δ_{a} is the absolute convergence tolerance.

In Matlab:

```
x = ... % initialize
xold = ...
while abs(x-xold) > deltaa
xold = x;
update x
end
```

Note: Matlab does not have an "until" structure. The while construct involves a reverse in the direction of the inequality.

Example: Solve $\cos (x)=x$ with Fixed Point Iteration Obtain numerical solution to

$$
\cos (x)=x
$$

The solution lies at the intersection of $y=x$ and $y=\cos (x)$.

In Chapter 6 we describe fixed point iteration as a method for obtaining a numerical approximation to the solution of a scalar equation. For now, trust that the follow algorithm will eventually give the solution.

1. Guess x_{0}
2. Set $x_{\text {old }}=x_{0}$
3. Update guess

$$
x_{\text {new }}=\cos \left(x_{o l d}\right)
$$

4. If $x_{\text {new }} \approx x_{\text {old }}$ stop; otherwise set $x_{\text {old }}=x_{\text {new }}$ and return to step 3

$$
\begin{equation*}
\text { Solve } \cos (x)=x \tag{4}
\end{equation*}
$$

Bad test \# 1

```
    while xnew ~= xold
```

This test will be true unless xnew and xold are exactly equal. In other words, xnew and xold are equal only when their bit patterns are identical. This is bad because

- Test may never be met because of oscillatory bit patterns
- If test is eventually met, the iterations will probably do more work than needed

MATLAB implementation

```
x0 = ...
k = 0;
xnew = x0;
    while NOT_CONVERGED & k < maxit
        xold = xnew;
        xnew = cos(xold);
        it = it + 1;
    end
```

(5)

Bad test \# 2
while (xnew-xold) > delta

Will always fail if xnew < xold

Workable test \# 1: Absolute tolerance
while abs(xnew-xold) < delta

What value of delta to use?

Workable test \# 2: Relative tolerance
while abs(xnew-xold)/xref > delta

The user supplies appropriate value of xref. For this particular iteration we could use xref $=$ xold.

```
while abs(xnew-xold)/xold > delta
```

Note: For this particular problem the exact solution is $\mathcal{O}(1)$ so the absolute and relative convergence tolerance will terminate the calculations at roughly the same iteration.

$$
\begin{equation*}
\text { Solve } \cos (x)=x \tag{8}
\end{equation*}
$$

Using the relative convergence tolerance, the code becomes

```
x0 = ... % initial guess
k = 0;
xnew = x0;
while (abs(xnew-xold)/xold > delta) & k < maxit
        xold = xnew;
        xnew = cos(xold);
        it = it + 1;
    end
```

Note: Parentheses around abs(xnew-xold)/xold > delta are not needed, but are added to make the test clear.

Truncation Error

Consider the series for $\sin (x)$

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

For small x, only a few terms are needed to get a good approximation to $\sin (x)$. The . . terms are "truncated"

$$
f_{\text {true }}=f_{\text {sum }}+\text { truncation error }
$$

The size of the truncation error depends on x and the number of terms included in $f_{\text {sum }}$

For small x, the series for $\sin (x)$ converges in a few terms

```
>> s = sinser(pi/6);
Series approximation to }\operatorname{sin}(0.523599
\begin{tabular}{rrc} 
k & term & ssum \\
1 & \(5.236 \mathrm{e}-001\) & 0.52359878 \\
3 & \(-2.392 \mathrm{e}-002\) & 0.49967418 \\
5 & \(3.280 \mathrm{e}-004\) & 0.50000213 \\
7 & \(-2.141 \mathrm{e}-006\) & 0.49999999 \\
9 & \(8.151 \mathrm{e}-009\) & 0.50000000 \\
11 & \(-2.032 \mathrm{e}-011\) & 0.50000000
\end{tabular}
```

Truncation error after 6 terms is $3.56382 \mathrm{e}-014$

The absolute truncation error in the series is small relative to the true value of $\sin (\pi / 6)$

```
>>err = (s-sin(pi/6))/sin(pi/6)
err =
    -7.1276e-014
```

For larger x, the series for $\sin (x)$ converges more slowly

| Series approximation to $\sin (7.853982)$ | | |
| :---: | :---: | :---: |
| k | term | ssum |
| 1 | $7.854 \mathrm{e}+000$ | 7.85398163 |
| 3 | -8.075e+001 | -72.89153055 |
| 5 | $2.490 \mathrm{e}+002$ | 176.14792646 |
| 7 | $-3.658 \mathrm{e}+002$ | -189.61411536 |
| 9 | $3.134 \mathrm{e}+002$ | 123.74757368 |
| 11 | $-1.757 \mathrm{e}+002$ | -51.97719366 |
| 13 | $6.948 \mathrm{e}+001$ | 17.50733908 |
| 15 | $-2.041 \mathrm{e}+001$ | -2.90292432 |
| 17 | $4.629 \mathrm{e}+000$ | 1.72578031 |
| 19 | -8.349e-001 | 0.89092132 |
| 21 | $1.226 \mathrm{e}-001$ | 1.01353632 |
| 23 | -1.495e-002 | 0.99858868 |
| 25 | $1.537 \mathrm{e}-003$ | 1.00012542 |
| 27 | -1.350e-004 | 0.99999038 |
| 29 | $1.026 \mathrm{e}-005$ | 1.00000064 |

Truncation error after 15 terms is $6.42624 \mathrm{e}-007$

Increasing the number of terms will allow the series to converge within the default error tolerance of 5×10^{-9} used in sinser. A better solution to the slow convergence of the series are explored in Exercise 23.

Big " \mathcal{O} " notation

$$
f(x)=P_{n}(x)+\mathcal{O}\left(\frac{\left(x-x_{0}\right)^{(n+1)}}{(n+1)!}\right)
$$

or, for $x-x_{0}=h$ we say

$$
f(x)=P_{n}(x)+\mathcal{O}\left(h^{(n+1)}\right)
$$

Taylor Series (4)

Consider the function

$$
f(x)=\frac{1}{1-x}
$$

The Taylor Series approximations to $f(x)$ of order 1,2 and 3 are

$$
\begin{aligned}
P_{1}(x) & =\frac{1}{1-x_{0}} \\
P_{2}(x) & =\frac{1}{1-x_{0}}+\frac{x-x_{0}}{\left(1-x_{0}\right)^{2}} \\
P_{3}(x) & =\frac{1}{1-x_{0}}+\frac{x-x_{0}}{\left(1-x_{0}\right)^{2}}+\frac{\left(x-x_{0}\right)^{2}}{\left(1-x_{0}\right)^{3}}
\end{aligned}
$$

Roundoff and Truncation Errors (1)

Roundoff and truncation errors are both present in any numerical computation.

Example:

Finite difference approximation
A finite difference approximation to $f^{\prime}(x)=d f / d x$ is

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{\prime \prime}(x)+\ldots
$$

This approximation is said to be first order because the leading term in the truncation error is linear in h. Dropping the truncation error terms we obtain

$$
f_{f d}^{\prime}(x)=\frac{f(x+h)-f(x)}{h}
$$

and

$$
f_{f d}^{\prime}(x)=f^{\prime}(x)+\mathcal{O}(h)
$$

To study the roles of roundoff and truncation errors ${ }^{1}$., compute the finite difference approximation to $f^{\prime}(x)$ when $f(x)=e^{x}$

$$
f(x)=e^{x} \quad \Longrightarrow \quad f^{\prime}(x)=e^{x}
$$

The relative error in the $f_{f d}^{\prime}(x)$ approximation to $\frac{d}{d x} e^{x}$ is

$$
E_{\mathrm{rel}}=\frac{f_{f d}^{\prime}(x)-f^{\prime}(x)}{f^{\prime}(x)}=\frac{f_{f d}^{\prime}(x)-e^{x}}{e^{x}}
$$

[^0]Truncation error dominates at large h. Roundoff error in $f(x+h)-f(h)$ dominates as $h \rightarrow 0$.

[^0]: ${ }^{1}$ The finite difference approximation is usually applied in models of differential equations where $f(x)$ is unknown

