$\mathbf{QUIZ}\ 7$

Numerical Analysis

Name:		<u></u>	
Date: Time Begun: Time Ended:			Friday October 29 Ron Buckmire
Topic: Solving Nonlinear	r Systems of Equati	ons	
The idea behind this quiz is for Specifically, I want you to show Newton's Method.	=		=
Reality Check:			
EXPECTED SCORE :	/10	ACTUAL SCORE	:/10
Instructions:			
1. Once you open the quiz start time and end time	. •	time as you need to comple heet.	ete it, but record your
2. You may use the book of	or any of your class	notes. You must work alone	<u>)</u> .
3. If you use your own paper have a stapler, buy one.		to the quiz before coming	to class. If you don't
4. After completing the quito these rules.	iz, sign the pledge b	elow stating on your honor t	that you have adhered
5. Your solutions must have and determine HOW yo	0	ch that an impartial observers solution.	er can read your work
6. Relax and enjoy			
7. This quiz is due on ACCEPTED.	Monday Novemb	oer 1, in class. NO LATE	QUIZZES WILL BE
Pledge: I,	, pledge m	ny honor as a human being ar	nd Occidental student,

that I have followed all the rules above to the letter and in spirit.

1. In class we found one of the points of intersection of the hyperbola $4x^2 - y^2 = 1$ and the circle

$$(x-1)^2 + y^2 = 2^2 \text{ to be } (1.1165151, 1.9966032).$$
Let $g_1(x,y) = \frac{8x - 4x^2 + y^2 + 1}{8}$ and $g_2(x,y) = \frac{2x - x^2 + 4y - y^2 + 3}{4}$ where $\vec{G}(\vec{x}) = \begin{bmatrix} g_1(x,y) \\ g_2(x,y) \end{bmatrix}$

(a) [1 pt] Show that the fixed point(s) of the vector function $\vec{G}(\vec{x})$ are exactly the points of intersection of the hyperbola $4x^2 - y^2 = 1$ and circle $(x-1)^2 + y^2 = 4$. (HINT: one way to do this is to show algebraically that the fixed points of \vec{G} satisfy the exact same equation that the points of intersection do.)

- (b) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1,2)^T$ compute the next approximation to the fixed point of \vec{G} using Successive Substitution, $\vec{x}_k = \vec{G}(\vec{x}_{k-1})$
- (c) [2 pts] Starting with an initial guess of $\vec{x}_0 = (1,2)^T$ compute the next approximation to the fixed point of \vec{G} using Seidel Iteration.
- (d) [2 pts] Considering $\vec{f}(\vec{x}) = \begin{bmatrix} 4x^2 y^2 1 \\ (x-1)^2 + y^2 2^2 \end{bmatrix}$ Find the Jacobian matrix J(x,y) for the
- (e) [3 pts] Starting with an initial guess of $\vec{x}_0 = (1,2)^T$ compute the next approximation to the fixed point of \vec{G} (which is also the root of \vec{f}) using Newton's Method.