BONUS QUIZ

Numerical Analysis

Name: _____

Date:	
Time Begun:	
Time Ended:	

Friday December 3 Ron Buckmire

Topic : Approximation Theory

The idea behind this quiz is for you to indicate your ability to use MATLAB to find the "best fit" curve to experimental data.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 1. Once you open the quiz, you have as much time as you need to complete it, but record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This bonus quiz is due on Monday December 6, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

x	1.0000	2.0000	4.0000	5.5000	7.0000
y	2.2361	10.9329	24.6765	42.8382	65.0486

Consider the experimental data above to postulate a relationship of $y = P(x) = c_1 x^{c_2}$ between the input and output experimental data.

a. [2 points] Derive transformations involving Y = Y(x, y) and X = X(x, y) which change the nonlinear relationship $y = c_1 x^{c_2}$ into a linear one between Y and X

b. [6 points] Use MATLAB's linefit function or some other calculations to find c_1 and c_2 . (Show all your calculations, such as MATLAB commands and what output it produces.)

c. [2 points] What is the least square error between the experimental data and the curve of best fit? That is, evaluate $E = \sum_{k=0}^{n} (y_k - P(x_k))^2$