BONUS QUIZ

Numerical Analysis

Name: _____

Date:	
Time Begun:	
Time Ended:	

Friday November 12 Ron Buckmire

Topic : More Fun With Norms!

The idea behind this quiz is to give you an appreciation for the significance of quadratic convergence.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : _____/10

Instructions:

- 1. Once you open the quiz, you have as much time as you need to complete it, but record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This bonus quiz is due on Monday November 15, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Math 370 Fall 2004

- 1. Prove the following statements for a random non-zero vector \vec{x} in \mathbb{R}^n where n > 1
- (a) [5 pts] Show that $||\vec{x}||_1 \le n ||\vec{x}||_{\infty}$

(b) [5 pts] Show that $||\vec{x}||_2 \leq \sqrt{n} ||\vec{x}||_{\infty}$