Overview

Interactive Computing

with Matlab

Gerald W. Recktenwald
Department of Mechanical Engineering
Portland State University
gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with Matlab: Implementations and Applications, by Gerald W. Recktenwald © 2002, Prentice-Hall, Upper Saddle River, NJ. These slides are © 2002 Gerald W. Recktenwald. The PDF version of these slides may be downloaded or stored or printed only for noncommercial, educationa use. The repackaging or sale of these slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental materia for the book, can be found at www.prenhall.com/recktenwald

- Basic Matlab Operations
- Starting Matlab
\triangleright Using Matlab as a calculator
\triangleright Introduction to variables and functions
- Matrices and Vectors: All variables are matrices.
\triangleright Creating matrices and vectors
\triangleright Subscript notation
- Colon notation
- Additional Types of Variables
\triangleright Complex numbers
\triangleright Strings
- Polynomials
- Working with Matrices and Vectors
\triangleright Linear algebra
\triangleright Vectorized operations
\square Array operators
- Managing the Interactive Environment
- Plotting

Starting Matlab

- Double click on the Matlab icon, or on unix systems type "matlab" at the command line.
- After startup Matlab displays a command window that is used to enter commands and display text-only results.
- Enter Commands at the command prompt:

EDU $>$ for educational version

- Matlab responds to commands by printing text in the command window, or by opening a figure window for graphical output.
- Toggle between windows by clicking on them with the mouse.

Matlab Windows (version 5)

Matlab Workspace (version 6)

Built-in Variables

pi $(=\pi)$ and ans are a built-in variables
>> pi
ans =
3.1416
>> $\sin ($ ans/4)
ans =
0.7071

Note: There is no "degrees" mode. All angles are measured in radians.

Enter formulas at the command prompt

$$
\begin{aligned}
& \begin{array}{l}
\gg 2+6-4 \\
\text { ans }= \\
4
\end{array} \\
& \text { >> ans } / 2 \\
& \text { ans }= \\
& 2
\end{aligned} \quad \text { (press return after " } 4 \text { ") }
$$

$$
\begin{aligned}
& \begin{array}{l}
\gg a=5 \\
a=5
\end{array} \\
& \begin{array}{l}
\gg b=6 \\
b=6
\end{array} \\
& \gg c=b / a \\
& c= \\
& 1.2000
\end{aligned}
$$

Built-in Functions

Many standard mathematical functions, such as sin, cos, log, and $\log 10$, are built-in

> >> $\log (256)$
> ans $=$
5.5452
>> $\log 10(256)$
ans = 2.4082
>> $\log 2(256)$
ans = 8

Looking for Functions

Ways to Get Help

Syntax:

lookfor string
searches first line of function descriptions for "string".

Example:

>> lookfor cosine
produces

ACOS Inverse cosine.
ACOSH Inverse hyperbolic cosine.
COS Cosine.
COSH Hyperbolic cosine.
page 8

On-line Help

Syntax:

help functionName

Example:

>> help log
produces
LOG Natural logarithm
LOG(X) is the natural logarithm of the elements of X. Complex results are produced if X is not positive. See also LOG2, LOG10, EXP, LOGM.

- Use on-line help to request info on a specific function >> help sqrt
- The helpwin function opens a separate window for the help browser >> helpwin('sqrt')
- Use lookfor to find functions by keywords >> lookfor functionName
- In Matlab version 6 and later the doc function opens the on-line version of the manual. This is very helpful for more complex commands.
>> doc plot

Suppress Output with Semicolon

Results of intermediate steps can be suppressed with semicolons.

Example:

Assign values to x, y, and z , but only display the value of z in the command window:

```
>> x = 5;
>> y = sqrt(59);
>> z = log(y) + x^0.25
    z =
        3.5341
```

Type variable name and omit the semicolon to print the value of a variable (that is already defined)

```
>> y
    y = 7.6811 (= log(sqrt(59)) + 5^0.25)
```


Multiple Statements per Line

Use commas or semicolons to enter more than one statement at once. Commas allow multiple statements per line without suppressing output.

```
>> a = 5; b = sin(a), c = cosh(a)
b =
    -0.9589
c =
    74.2099
```


Built-in Matlab Variables

Name	Meaning
ans	value of an expression when that expression is not assigned to a variable
eps	floating point precision
pi	$\pi, \quad(3.141492 \ldots)$
realmax	largest positive floating point number
realmin	smallest positive floating point number
Inf	∞, a number larger than realmax, the result of evaluating $1 / 0$.
NaN	not a number, the result of evaluating $0 / 0$

Rule: Only use built-in variables on the right hand side of an expression. Reassigning the value of a built-in variable can create problems with built-in functions.

Exception: i and j are preassigned to $\sqrt{-1}$. One or both of i or j are often reassigned as loop indices. More on this later

Legal variable names:

- Begin with one of a-z or $\mathrm{A}-\mathrm{Z}$
- Have remaining characters chosen from a-z, $\mathrm{A}-\mathrm{Z}, 0-9$, or
- Have a maximum length of 31 characters
- Should not be the name of a built-in variable, built-in function, or user-defined function

Examples:

xxxxxxxxx
pipeRadius
widgets_per_baubble
mySum
mysum

Note: mySum and mysum are different variables. Matlab is case sensitive.

Matrices and Vectors

All Matlab variables are matrices

A Matlab vector is a matrix with one row or one column
A Matlab scalar is a matrix with one row and one column

Overview of Working with matrices and vectors

- Creating vectors:
linspace and logspace
- Creating matrices:
ones, zeros, eye, diag, ...
- Subscript notation
- Colon notation
- Vectorization

Matlab variables are created with an assignment statement

```
>> x = expression
```

where expression is a legal combinations of numerical values, mathematical operators, variables, and function calls that evaluates to a matrix, vector or scalar.

The expression can involve:

- Manual entry
- Built-in functions that return matrices
- Custom (user-written) functions that return matrices
- Loading matrices from text files or "mat" files

Transpose Operator

Once it is created, a variable can be transformed with other operators. The transpose operator converts a row vector to a column vector (and vice versa), and it changes the rows of a matrix to columns.

```
>> v = [2 [ 4 1 1 7]
v = 
>> v'
ans =
    2
        4
        7
    > A=[[1 2 3; 4 5 6; 7 8 9 ]
    A =
        1
    > A,
    ans =
\begin{tabular}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{tabular}
```


Manual Entry

For manual entry, the elements in a vector are enclosed in square brackets. When creating a row vector, separate elements with a space.

$$
\begin{aligned}
& \gg v=\left[\begin{array}{lll}
7 & 3 & 9
\end{array}\right] \\
& v=\begin{array}{lll}
7 & 3 & 9
\end{array}
\end{aligned}
$$

Separate columns with a semicolon

$$
\begin{aligned}
& \text { >> w }=[2 ; 6 ; 1] \\
& \mathrm{w}= \\
& 2 \\
& 6 \\
& 1
\end{aligned}
$$

In a matrix, row elements are separated by spaces, and columns are separated by semicolons

$$
\begin{aligned}
& \text { > } A=\left[\begin{array}{llllllllll}
1 & 2 & 3 ; & 5 & 7 & 11 ; & 13 & 17 & 19
\end{array}\right] \\
& \mathrm{A}= \\
& \begin{array}{rrr}
1 & 2 & 3 \\
5 & 7 & 11 \\
13 & 17 & 19
\end{array}
\end{aligned}
$$

Overwriting Variables

Once a variable has been created, it can be reassigned

$$
\begin{aligned}
& \gg x=2 ; \\
& \gg x=x+2 \\
& x= \\
& 4
\end{aligned}
$$

Creating vectors with linspace

The linspace function creates vectors with elements having uniform linear spacing.

Syntax:

```
x = linspace(startValue,endValue)
    x = linspace(startValue,endValue,nelements)
```


Examples:

>> u = linspace $(0.0,0.25,5)$
u =
$\begin{array}{lllll}0 & 0.0625 & 0.1250 & 0.1875 & 0.2500\end{array}$
>> u = linspace (0.0,0.25) ;
>> v $=$ linspace $(0,9,4)$,
$\mathrm{v}=$
0
3
6
9

Note: Column vectors are created by appending the transpose operator to linspace

Creating vectors with logspace

The logspace function creates vectors with elements having uniform logarithmic spacing.

Syntax:

$$
\begin{aligned}
& x=\text { logspace(startValue }, \text { endValue) } \\
& x=\text { logspace(startValue, endValue, nelements) }
\end{aligned}
$$

creates nelements elements between $10^{\text {startValue }}$ and $10^{\text {endValue. }}$. The default value of nelements is 100

Example:

```
>> w = logspace (1, 4, 4)
w =
\(10 \quad 100 \quad 1000 \quad 10000\)
```


Example: A Table of Trig Functions

>> $\mathrm{x}=$ linspace $(0,2 * \mathrm{pi}, 6)^{\prime}$;			(note transpose)
>> $\mathrm{y}=\sin (\mathrm{x})$;			
>> $\mathrm{z}=\cos (\mathrm{x})$;			
>> [x y z]			
ans =			
0	0	1.0000	
1.2566	0.9511	0.3090	
2.5133	0.5878	-0.8090	
3.7699	-0.5878	-0.8090	
5.0265	-0.9511	0.3090	
6.2832	0	1.0000	

The expressions $y=\sin (x)$ and $z=\cos (x)$ take advantage of vectorization. If the input to a vectorized function is a vector or matrix, the output is often a vector or matrix having the same shape. More on this later.

Functions to Create Matrices (1)

Name	Operation(s) Performed
diag	create a matrix with a specified diagonal entries, or extract diagonal entries of a matrix
eye	create an identity matrix
ones	create a matrix filled with ones
rand	create a matrix filled with random numbers
zeros	create a matrix filled with zeros
linspace	create a row vector of linearly spaced elements
logspace	create a row vector of logarithmically spaced elements

Functions to Create Matrices (2)

Use ones and zeros to set intial values of a matrix or vector.

Syntax:

A = ones(nrows, ncols)
$A=$ zeros(nrows,ncols)

Examples:

>> $D=$ ones $(3,3)$
D $=$

1	1	1
1	1	1
1	1	1

>> $E=\operatorname{ones}(2,4)$
E =
$\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$

Functions to Create Matrices (4)

The eye function creates identity matrices of a specified size. It can also create non-square matrices with ones on the main diagonal.

Syntax:

$$
\begin{aligned}
& A=\operatorname{eye}(n) \\
& A=\operatorname{eye}(n r o w s, n c o l s)
\end{aligned}
$$

Examples:

$\mathrm{C}=$				
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1
>> D $=$ eye $(3,5)$				
$\mathrm{D}=$				
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0

ones and zeros are also used to create vectors. To do so, set either nrows or ncols to 1 .

```
>> s = ones(1,4)
s =
```

$\gg t=\operatorname{zeros}(3,1)$
$\mathrm{t}=$

0
0

The diag function can either create a matrix with specified diagonal elements, or extract the diagonal elements from a matrix

Syntax:

$$
\begin{aligned}
& A=\operatorname{diag}(v) \\
& v=\operatorname{diag}(A)
\end{aligned}
$$

Example:

Use diag to create a matrix

$$
\begin{aligned}
& >\mathrm{v}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \\
& >\mathrm{A}=\operatorname{diag}(\mathrm{v}) \\
& \mathrm{A}= \\
& \\
& 1
\end{aligned}
$$

Functions to Create Matrices (6)

Example:
Use diag to extract the diagonal of a matrix

$$
\begin{aligned}
& \gg B=[1: 4 ; 5: 8 ; 9: 12] \\
& \text { B = }
\end{aligned}
$$

Note: The action of the diag function depends on the characteristics and number of the input(s). This polymorphic behavior of Matlab functions is common. The on-line documentation (help diag) explains the possible variations.

Subscript Notation (2)

Referring to elements outside of current matrix dimensions results in an error

```
>A=[11 2 3; 4 5 6; 7 8 9];
    >> A(1,4)
    ??? Index exceeds matrix dimensions.
```

Assigning an elements outside of current matrix dimensions causes the matrix to be resized!

```
>A=[[1 2 3; 4 5 6; 7 8 9]
A =
    1
    >A(4,4) = 11
A =
\begin{tabular}{rrrr}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
0 & 0 & 0 & 11
\end{tabular}
```

Matlab automatically resizes matrices on the fly. jth column. Subscript notation can be used on the right hand side of an expression to refer to a matrix element.

```
>> A = [1 2 3; 4 5 6; 7 8 9];
> b = A (3,2)
b =
    8
> c = A(1,1)
c =
    1
```

Subscript notation is also used to assign matrix elements

```
> \(A(1,1)=c / b\)
\(\mathrm{A}=\)
\begin{tabular}{lll}
0.2500 & 2.0000 & 3.0000 \\
4.0000 & 5.0000 & 6.0000 \\
7.0000 & 8.0000 & 9.0000
\end{tabular}
```


Colon Notation (1)

Colon notation is very powerful and very important in the effective use of Matlab. The colon is used as both an operator and as a wildcard.

Use colon notation to:

- create vectors
- refer to or extract ranges of matrix elements

Syntax:

startValue: endValue
startValue:increment:endValue

Note: startValue, increment, and endValue do not need to be integers

Creating row vectors:

```
>> \(s=1: 4\)
\(s=\begin{array}{llll} & & \\ 1 & 2 & 3 & 4\end{array}\)
\(>t=0: 0.1: 0.4\)
\(\mathrm{t}=\)
\begin{tabular}{lllll}
0 & 0.1000 & 0.2000 & 0.3000 & 0.4000
\end{tabular}
```

Creating column vectors:

```
>> u = (1:5),
u =
            2
                    3
                4
>> v = 1:5'
v=}\begin{array}{llllll}{1}&{2}&{3}&{4}&{5}
```

v is a row vector because $1: 5^{\prime}$ creates a vector between 1 and the transpose of 5 .

Colon Notation (4)

Colon notation is often used in compact expressions to obtain results that would otherwise require several steps

Example:

$\begin{aligned} & >A=\operatorname{ones}(8,8) ; \\ & >A(3: 6,3: 6)=\operatorname{zeros}(4,4) \end{aligned}$							
$\mathrm{A}=$							
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

Use colon as a wildcard to refer to an entire column or row

```
> A = [1 2 3; 4 5 6; 7 8 9];
    >> A(:,1)
    ans =
        1
        4
```

 >> \(A(2,:)\)
 ans =
 Or use colon notation to refer to subsets of columns or rows
> $A(2: 3,1)$
ans $=$
4
> $A(1: 2,2: 3)$
ans $=$
ans $=$
23
NMM: Interactive Computing with Matlab

Finally, colon notation is used to convert any vector or matrix to a column vector

Examples:

$$
\gg x=1: 4 ;
$$

$$
\gg y=x(:)
$$

$$
\mathrm{y}=
$$

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& 2 \\
& 3
\end{aligned}
$$

$$
\gg A=\operatorname{rand}(2,3) ;
$$

$$
>\mathrm{v}=\mathrm{A}(:)
$$

$$
\mathrm{v}=
$$

0.9501
0.2311
0.6068
0.4860
0.8913
0.7621
0.4565

Note: The rand function generates random elements between zero and one. Repeating the preceding statements will, in all likelihood, produce different numerical values for the elements of v .

Additional Types of Variables

The basic Matlab variable is a matrix - a two dimensional array of values. The elements of a matrix variable can either be numeric values or characters. If the elements are numeric values they can either be real or complex (imaginary).

More general variable types are available: n-dimensional arrays (where $n>2$), structs, cell arrays, and objects. Numeric (real and complex) and string arrays of dimension two or less will be sufficient for our purposes.

We now consider some simple variations on numeric and string matrices:

- Complex Numbers
- Strings
- Polynomials

Unit Imaginary Numbers

i and j are ordinary Matlab variables that have be preassigned the value $\sqrt{-1}$.

$$
\begin{aligned}
& \gg i^{\wedge} 2 \\
& \text { ans }=
\end{aligned}
$$

$$
-1
$$

Both or either i and j can be reassigned

```
    >> \(i=5 ;\)
    >> \(\mathrm{t}=8\);
    \(\gg \mathrm{u}=\operatorname{sqrt}(\mathrm{i}-\mathrm{t}) \quad(\mathrm{i}-\mathrm{t}=-3\), not \(-8+\mathrm{i})\)
    \(\mathrm{u}=\)
        \(0+1.7321 i\)
    >> u*u
    ans \(=\)
        \(-3.0000\)
    \(\gg A=\left[\begin{array}{lll}12 ; & 4\end{array}\right]\);
    >> \(i=2\);
    > \(A(i, i)=1\)
    \(A=\)
        \(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\)
```

Matlab automatically performs complex arithmetic

```
>> sqrt(-4)
    ans =
        \(0+2.0000 i\)
    \(\gg x=1+2 * i \quad\) (or, \(x=1+2 * j\) )
    \(\mathrm{x}=\)
        \(1.0000+2.0000 i\)
    >y \(=1-2 * i\)
    \(y=\)
        \(1.0000-2.0000 i\)
    >> \(\mathrm{z}=\mathrm{x}\) * y
    \(z=5\)
        5
```


Euler Notation (1)

Euler notation represents a complex number by a phaser

$$
\begin{aligned}
z & =\zeta e^{i \theta} \\
x & =\operatorname{Re}(z)=|z| \cos (\theta)=\zeta \cos (\theta) \\
y & =i \operatorname{Im}(z)=i|z| \sin (\theta)=i \zeta \sin (\theta)
\end{aligned}
$$

imaginary

Functions for Complex Arithmetic (1)

Function	Operation
abs	Compute the magnitude of a number $\operatorname{abs}(z)$ is equivalent to to sqrt ($\left.\operatorname{real}(z)^{\wedge} 2+\operatorname{imag}(z) ~ 2\right)$
angle	Angle of complex number in Euler notation
exp	If x is real, $\exp (\mathrm{x})=e^{x}$
	If z is complex, $\exp (z)=e^{\operatorname{Re}(z)}(\cos (\operatorname{Im}(z)+i \sin (\operatorname{Im}(z))$
conj	Complex conjugate of a number
imag	Extract the imaginary part of a complex number
real	Extract the real part of a complex number

Note: When working with complex numbers, it is a good idea to reserve either i or j for the unit imaginary value $\sqrt{-1}$.

Strings

- Strings are matrices with character elements.
- String constants are enclosed in single quotes
- Colon notation and subscript operations apply

Examples:

```
>> first = 'John';
    >> last = 'Coltrane';
    >> name = [first,' ',last]
    name =
    John Coltrane
    >> length(name)
    ans =
        1 3
    >> name(9:13)
    ans =
    trane
```


Examples

$$
\begin{aligned}
& \gg \text { zeta }=5 ; \text { theta }=\mathrm{pi} / 3 ; \\
& \gg \mathrm{z}=\text { zeta*exp(} \mathrm{i} * \text { theta) } \\
& \mathrm{z}= \\
& 2.5000+4.3301 \mathrm{i} \\
& \gg \text { abs }(\mathrm{z}) \\
& \text { ans }= \\
& 5
\end{aligned}
$$

Remember: There is no "degrees" mode in Matlab. All angles are measured in radians.

Function	Operation
char	convert an integer to the character using ASCII codes, or combine characters into a character matrix
findstr	finds one string in another string
length	returns the number of characters in a string num2str converts a number to string
str2num	converts a string to a number strcmp compares two strings
strmatch	identifies rows of a character array that begin with a string
strncmp	compares the first n elements of two strings sprintf

Functions for String Manipulation (2)

Examples:

```
>> msg1 = ['There are ',num2str(100/2.54),' inches in a meter']
>> msg1 =
There are 39.3701 inches in a meter
>>ms2 = sprintf('There are %5.2f cubic inches in a liter',1000/2.54`3)
>>msg2 = s
There are 61.02 cubic inches in a liter
>> both = char(msg1,msg2)
    both =
There are 39.3701 inches in a meter
There are 61.02 cubic inches in a liter
> strcmp(msg1,msg2)
ans =
strncmp(msg1,msg2,9)
ans =
>> findstr('in',msg1)
ans =
    19 26
```


Functions for Manipulating Polynomials

Function	Operations performed
conv	product (convolution) of two polynomials
deconv	division (deconvolution) of two polynomials
poly	Create a polynomial having specified roots
polyder	Differentiate a polynomial
polyval	Evaluate a polynomial
polyfit	Polynomial curve fit
roots	Find roots of a polynomial

Matlab polynomials are stored as vectors of coefficients. The polynomial coefficients are stored in decreasing powers of x

$$
P_{n}(x)=c_{1} x^{n}+c_{2} x^{n-1}+\ldots+c_{n} x+c_{n+1}
$$

Example:

Evaluate $x^{3}-2 x+12$ at $x=-1.5$

$$
\begin{aligned}
& \gg c=\left[\begin{array}{llll}
1 & 0 & -2 & 12
\end{array}\right] ; \\
& \gg \text { polyval }(c, 1.5) \\
& \text { ans }= \\
& 12.3750
\end{aligned}
$$

Manipulation of Matrices and Vectors

The name "Matlab" evolved as an abbreviation of "MATrix LABoratory". The data types and syntax used by Matlab make it easy to perform the standard operations of linear algebra including addition and subtraction, multiplication of vectors and matrices, and solving linear systems of equations.

Chapter 7 provides a detailed review of linear algebra. Here we provide a simple introduction to some operations that are necessary for routine calculation.

- Vector addition and subtraction
- Inner and outer products
- Vectorization
- Array operators

Vector Addition and Subtraction

Vector and addition and subtraction are element-by-element operations.

Example:

$\left.\begin{array}{rlrl} & > & u=\left[\begin{array}{lll}10 & 9 & 8\end{array}\right] ; & \text { (u and } v \text { are row vectors) } \\ \gg & v=\left[\begin{array}{llll}1 & 2 & 3\end{array}\right] ; & & \\ \gg & u+v & & \\ \text { ans } & = & & \\ & 11 & 11 & 11\end{array}\right]$

Vector Inner and Outer Products

$$
\sigma=u \cdot v=u v^{T} \Longleftrightarrow \sigma=\sum u_{i} v_{i}
$$

The outer product combines two vectors to form a matrix

$$
A=u^{T} v \Longleftrightarrow a_{i, j}=u_{i} v_{j}
$$

Inner and Outer Products in Matlab

Inner and outer products are supported in Matlab as natural extensions of the multiplication operator

>> $u=\left[\begin{array}{lll}10 & 9 & 8\end{array}\right] ;$			(u and v are row vectors)
$\gg v=\left[\begin{array}{lll} 1 & 2 & 3 \end{array}\right] ;$			
>> $\mathrm{u} * \mathrm{v}$,			(inner product)
ans =			
52			
>> u'*V			(outer product)
ans =			
10	20	30	
9	18	27	
8	16	24	

Vectorization

- Vectorization is the use of single, compact expressions that operate on all elements of a vector without explicitly executing a loop. The loop is executed by the Matlab kernel, which is much more efficient at looping than interpreted Matlab code.
- Vectorization allows calculations to be expressed succintly so that programmers get a high level (as opposed to detailed) view of the operations being performed.
- Vectorization is important to make Matlab operate efficiently.

Most built-in function support vectorized operations. If the input is a scalar the result is a scalar. If the input is a vector or matrix, the output is a vector or matrix with the same number of rows and columns as the input.

Example:

>> $\mathrm{x}=0: \mathrm{pi} / 4: \mathrm{pi}$		(define a row vector)		
$\mathrm{x}=$				
0	0.7854	1.5708	2.3562	3.1416
>> $\mathrm{y}=\cos$		(evaluate cosine of each x (i)		
$\mathrm{y}=$				
1.0000	0.7071	0	-0.7071	-1.0000

Contrast with Fortran implementation:

$$
\begin{aligned}
& \text { real } \mathrm{x}(5), \mathrm{y}(5) \\
& \mathrm{pi}=3.14159624 \\
& \mathrm{dx}=\mathrm{pi} / 4.0 \\
& \text { do } 10 \quad \mathrm{i}=1,5 \\
& \quad \mathrm{x}(\mathrm{i})=(\mathrm{i}-1) * \mathrm{dx} \\
& \mathrm{y}(\mathrm{i})=\sin (\mathrm{x}(\mathrm{i}))
\end{aligned}
$$

10 continue

No explicit loop is necessary in Matlab.

Array Operators

Array operators support element-by-element operations that are not defined by the rules of linear algebra

Array operators are designated by a period prepended to the standard operator

Symbol	Operation
.$*$	element-by-element multiplication
.$/$	element-by-element "right" division
.\} $&{\text { element-by-element "left" division }} \\ {.{ }^{\text {. }}} &{\text { element-by-element exponentiation }} \\ {\hline}$	

Array operators are a very important tool for writing vectorized code.

```
More examples
    >>A = pi*[ \(12 ; 3\) 4]
    \(\mathrm{A}=\)
        \(3.1416 \quad 6.2832\)
        \(9.4248 \quad 12.5664\)
    \(\gg S=\sin (A)\)
    \(S=\)
        \(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\)
    >> \(B=A / 2\)
    \(B=\)
\(1.5708 \quad 3.1416\)
    \(4.7124 \quad 6.2832\)
    > \(T=\sin (B)\)
\(\mathrm{T}=\)
    10
    \(-10\)
```


Using Array Operators (1)

Examples:

Element-by-element multiplication and division

```
>> u = [llll
    > v = [\begin{array}{lll}{4}&{5}&{6}\end{array}];
    >> w = u.*v (element-by-element product)
    >> w = u.*V
        4 10 18
>> x = u./v (element-by-element division)
x =
    0.2500 0.4000 0.5000
>> y = sin(pi*u/2) .* cos(pi*v/2)
y =, 0
>> z = sin(pi*u/2) ./ cos(pi*v/2)
Warning: Divide by zero.
z =
    1 NaN 1
```


Using Array Operators (2)

The Matlab Workspace (1)

Examples:

Application to matrices

```
    >> A = [1 [1 2 3 4; 5 6 7 8];
```

 >> \(B=[8765 ; 4321] ;\)
 >> A.*B
 ans \(=\)
 | 8 | 14 | 18 | 20 |
| ---: | ---: | ---: | ---: |
| 20 | 18 | 14 | 8 |

>> $A * B$
??? Error using ==> *
Inner matrix dimensions must agree.

>> $A * B^{\prime}$

ans =
$60 \quad 20$
16460
> A. ${ }^{2}$
ans =

$$
\begin{array}{rrrr}
1 & 4 & 9 & 16 \\
25 & 36 & 49 & 64
\end{array}
$$

The Matlab Workspace (2)

The clear command deletes variables from the workspace. The who command lists the names of variables in the workspace

```
>> clear
>> who
(No response, no variables are defined after 'clear')
>> a = 5; b = 2; c= 1;
>> d(1) = sqrt(b^2 - 4*a*c);
>> d(2) = -d(1);
>> who
Your variables are:
```

All variables defined as the result of entering statements in the command window, exist in the Matlab workspace.

At the beginning of a Matlab session, the workspace is empty.

Being aware of the workspace allows you to

- Create, assign, and delete variables
- Load data from external files
- Manipulate the Matlab path

The whos command lists the name, size, memory allocation, and the class of each variables defined in the workspace.

>> whos			
Name	Size	Bytes Class	
a	1×1	8	double array
b	1×1	8	double array
c	1×1	8	double array
d	1×2	32	double array (complex)

Grand total is 5 elements using 56 bytes
Built-in variable classes are double, char, sparse, struct, and cell. The class of a variable determines the type of data that can be stored in it. We will be dealing primarily with numeric data, which is the double class, and occasionally with string data, which is in the char class.

Working with External Data Files

Loading Data from External File

Write data to a file
save fileName
save fileName variable1 variable2 ...
save fileName variable1 variable2 ... -ascii

Read in data stored in matrices
load fileName
load fileName matrixVariable

Matlab will only use those functions and data files that are in its path.

To add N: \IMAUSER \ME352\PS2 to the path, type
>> p = path;
>> path(p,'N: \IMAUSER $\backslash M E 352 \backslash P S 2$ ');

Matlab version 5 and later has an interactive path editor that makes it easy to adjust the path.

The path specification string depends on the operating system. On a Unix/Linux computer a path setting operation might look like:

$$
\begin{aligned}
& \text { >> } p=\text { path; } \\
& \text { >> path }(\mathrm{p}, \sim / \text { matlab/ME352/ps2') }
\end{aligned}
$$

Example:

Load data from a file and plot the data

```
>> load wolfSun.dat;
    >> xdata = wolfSun(:,1);
    >> ydata = wolfSun(:,2);
    >> plot(xdata,ydata)
```

- Plotting (x, y) data
- Axis scaling and annotation
- 2D (contour) and 3D (surface) plotting

Plotting (x, y) Data (1)
Plotting (x, y) Data (2)

Two dimensional plots are created with the plot function

Syntax:

plot (x, y)
plot(xdata, ydata, symbol)
plot $(x 1, y 1, x 2, y 2, \ldots)$
plot ($x 1, y 1$, symbol1, $x 2, y 2$, symbol2, ...)

Note: x and y must have the same shape, x 1 and y 1 must have the same shape, x 2 and y 2 must have the same shape, etc.

Line and Symbol Types (1)

The curves for a data set are drawn from combinations of the color, symbol, and line types in the following table.

Color	Symbol	Line
y yellow	. point	- solid
m magenta	- circle	dotted
c cyan	x x -mark	-. dashdot
r red	+ plus	-- dashed
g green	* star	
b blue	s square	
w white	d diamond	
k black	v triangle (down)	
	- triangle (up)	
	$\begin{aligned} & <\quad \text { triangle } \\ & \text { (left) } \end{aligned}$	
	> triangle (right)	
	p pentagram	
	h hexagram	

To choose a color/symbol/line style, chose one entry from each column.

Example:

A simple line plot
>> $\mathrm{x}=\operatorname{linspace(0,2*pi);~}$
>> $y=\sin (x)$.
>> plot (x, y);

Examples:

Put yellow circles at the data points:
plot(x,y,'yo')

Plot a red dashed line with no symbols:

$$
\operatorname{plot}\left(x, y, r^{--}\right)
$$

Put black diamonds at each data point and connect the diamonds with black dashed lines:
plot(x,y,'kd--')

Alternative Axis Scaling (1)

Alternative Axis Scaling (2)

Combinations of linear and logarithmic scaling are obtained with functions that, other than their name, have the same syntax as the plot function.

Name	Axis scaling
loglog	$\log _{10}(y)$ versus $\log _{10}(x)$
plot	linear y versus x
semilogx	linear y versus $\log _{10}(x)$
semilogy	$\log _{10}(y)$ versus linear x

Note: As expected, use of logarithmic axis scaling for data sets with negative or zero values results in a error. Matlab will complain and then plot only the positive (nonzero) data.

Multiple plots per figure window (1)

The subplot function is used to create a matrix of plots in a single figure window.

Syntax:
subplot(nrows, ncols, thisPlot)
Repeat the values of nrows and ncols for all plots in a single figure window. Increment thisPlot for each plot

Example:

$$
\begin{aligned}
& \gg \text { subplot }(2,1) \text { 2*pi) } \\
& \text { >> plot(} x, \sin (x)) \text {; axis([0 2*pi -1.5 1.5]); title('sin(x)'); } \\
& \text { >> subplot (2,2,2); } \\
& \gg \operatorname{plot}(x, \sin (2 * x)) \text {; axis([0 } 2 * \mathrm{pi}-1.5 \text { 1.5]); title('sin }(2 \mathrm{x}) \text { '); } \\
& \text { >> subplot (2,2,3); } \\
& \gg \operatorname{plot}(x, \sin (3 * x)) \text {; axis([0 } 2 * \operatorname{pi}-1.5 \text { 1.5]); title('sin(3x)'); } \\
& \text { >> subplot }(2,2,4) \text {; } \\
& \text { >> plot(x,sin(4*x)); axis([0 2*pi -1.5 1.5]); title('sin(4x)'); }
\end{aligned}
$$

(See next slide for the plot.)

Example:

```
>> x = linspace(0,3);
>> y = 10*exp (-2*x);
>> plot(x,y);
```


>> semilogy (x, y);

Plot Annotation

Name	Operation(s) performed
axis	Reset axis limits grid Draw grid lines corresponding to the major major ticks on the x and y axes
gtext	Add text to a location determined by a mouse click
legend	Create a legend to identify symbols and line types when multiple curves are drawn on the same plot
text	Add text to a specified (x, y) location
xlabel	Label the x-axis
ylabel	Label the y-axis title
Add a title above the plot	

Note: The pdxTemp.dat file is in the data directory of the NMM toolbox. Make sure the toolbox is installed and is included in the Matlab path.

