## Differential Equations

Math 341 Fall 2014
MWF 3:00-3:55pm Fowler 307
(C)2014 Ron Buckmire

## Worksheet 28

TITLE Laplace Transforms and Introduction to Convolution
CURRENT READING Blanchard, 6.5
Homework \#11 Assignments due Monday November 17
Section 6.1: 2, 3, 5, 7, 8, 9, 15, 18, 25*.
Section 6.2: 1, 2, 4, 8, 15, 16, 18*.
Homework \#12 Assignments due Monday November 24
Section 6.3: 5, 6, 8, 15, 18, 27, 28.
Section 6.4: 1, 2, 6, $7^{*}$.

## SUMMARY

We shall discuss the equivalent of the product rule for Laplace Transforms and be introduced to the concept of the convolution of two functions.

## 1. Product Rule for Laplace Transforms

## DEFINITION: convolution

If two functions $f(t)$ and $g(t)$ are piecewise continuous on $[0, \infty)$ then the convolution of $f$ and $g$, usually denoted $f * g$ is defined to be

$$
\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

NOTE: this "product" is a function of $t$. The use of the "*" symbol is deliberate, since the convolution operation has the following familiar properties:

## THEOREM: properties of convolution

If $f, g$ and $h$ are piecewise continuous on $[0, \infty)$, then
I. $f * g=g * f$ (Commutative)
II. $f *(g+h)=f * g+f * h$ (Distributive Under Addition)
III. $f *(g * h)=(f * g) * h$ (Associative)
IV. $f * 0=0$ (Existence of Zero Object)

## THEOREM: The convolution theorem

If $f(t)$ and $g(t)$ are piecewise continuous on $[0, \infty)$ and of exponential order so that $F(s)=$ $\mathcal{L}[f(t)]$ and $G(s)=\mathcal{L}[g(t)]$ then $\mathcal{L}[f * g]=F(s) G(s)$.

## Corollary

$\mathcal{L}^{-1}[F(s) G(s)]=f * g$.
Exercise Evaluate $\mathcal{L}\left[\int_{0}^{t} e^{\tau} \sin (t-\tau) d \tau\right]$. [HINT: use the convolution theorem!]

## 2. The General Solution To A Non-Homogeneous Linear Second Order ODE

Consider $y^{\prime \prime}+p y^{\prime}+q y=f(t)$ with $y(0)=0$ with $y^{\prime}(0)=0$. It can be shown that the exact solution $y(t)$ (for $t>0$ ) to this problem is given by a convolution, namely $\xi(t) * f(t)$ where $\mathcal{L}[\xi(t)]=\frac{1}{s^{2}+p s+q}$
This is a pretty incredible result. It is known as Duhamel's Principle.
What one does is show that the $y=\xi(t)$ is the solution to the unit impulse version of the problem, i.e. $y^{\prime \prime}+p y^{\prime}+q y=\delta_{0}(t)$ with $y(0)=0$ with $y^{\prime}(0)=0$. Thus, if one wants to solve any other non-homogeneous problem all one needs to do is solve the unit impulse problem, and convolve that solution with the given non-homogeneous function.

## EXAMPLE

Show that the general solution to $y^{\prime \prime}+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=0$ is
$y(t)=\int_{0}^{t} \sin (t-u) f(u) d u$

## 3. Derivatives of Laplace Transforms

EXAMPLE
Show that $\frac{d}{d s} F(s)=-\mathcal{L}[t f(t)]$ and $\frac{d^{2}}{d s^{2}} F(s)=\mathcal{L}\left[t^{2} f(t)\right]$.

## THEOREM: Derivatives of Laplace Transforms

When $F(s)=\mathcal{L}[f(t)]$, and $n=0,1,2, \ldots \mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
Exercise We now have TWO different ways to show that $\mathcal{L}\left[t e^{a t}\right]=\frac{1}{(s-a)^{2}}$ WITHOUT EVALUATING AN INTEGRAL. Do this.

## 4. Laplace Transform of an Integral

We can use the Convolution Theorem with $g(t)=1$ and show that $\mathcal{L}\left[\int_{0}^{t} f(\tau) d \tau\right]=\frac{F(s)}{s}$

NOTE
I. Multiplication of $f(t)$ by $t$ generally involves differentiation of its Laplace Transform $F(s)$ with respect to $s$.
II. Division of $F(s)$ by $s$ generally involves anti-differentiation of its Inverse Laplace Transform $f(t)$ with respect to $t$
Mathematically, these statements can be expressed as
I. $\mathcal{L}[t f(t)]=\frac{d}{d s}(\mathcal{L}[f(t)])$ and II. $\mathcal{L}[f(t)]=\frac{\mathcal{L}\left[f^{\prime}(t)\right]}{s}$ and are always true if the FunctionTransform pair $f(t) \leftrightarrow F(s)$ has the property that $f(0)=0$.

GROUPWORK
Find $\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+1\right)}\right]$

