Differential Equations

Math 341 Fall 2014
MWF 3:00-3:55pm Fowler 307
(C)2014 Ron Buckmire
http://faculty.oxy.edu/ron/math/341/14/

Worksheet 23

TITLE Hamiltonian Systems

CURRENT READING Blanchard, $5.1 \& 5.3$
Homework Assignments \#10 due Monday November 10
(* indicates EXTRA CREDIT)
Section 5.1: 3, 4, 5, 8, 18, 20*.
Section 5.3: 2, 9, 12, 13, 14, 18*.
Chapter 5 Review: 1, 2, 6, 7, 8, 9, 11, 12, 26, 27*.

SUMMARY

We shall continue our analysis of non-linear systems by introducing the concept of a Hamiltonian function.

Consider the following nonlinear planar system of ODEs

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=x-x^{2}
\end{aligned}
$$

Exercise

Show that the function $H(x, y)=\frac{1}{2} y^{2}-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}$ has the property that $\frac{d H}{d t}=0$ if x and y simultaneously satisfy the given system of ODEs. (HINT: Use the Differentiation Chain Rule!)

1. The Hamiltonian

DEFINITION: Hamiltonian function

A real-valued function $H(x, y)$ is considered to be a conserved quantity for a system of ordinary differential equations if it is constant along ALL solution curves of the system. In other words, IF $(x(t), y(t))$ is a solution of the system then $H(x(t), y(t)$ is constant for all time which also implies that $\frac{d}{d t} H(x(t), y(t))=0$. The function $H(x, y)$ is known as the Hamiltonian function (or Hamiltonian) of the system of ODEs.

2. The Hamiltonian Level Curves and The Phase Portrait RECALL

The level curves or contours of the function $H(x, y)$ are the set of points in the plane which satisfy the equation $H(x, y)=k$ for certain real values k.
Let's compare the level curves of $H(x, y)=\frac{1}{2} y^{2}-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}$ with the direction field of the system $\dot{x}=y ; \quad \dot{y}=x-x^{2}$. What do you notice?

3. Hamiltonian System

DEFINITION: Hamiltonian System

A system of differential equations is called a Hamiltonian system if there exists a realvalued function $H(x, y)$ such that

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{\partial H}{\partial y} \\
\frac{d y}{d t} & =-\frac{\partial H}{\partial x}
\end{aligned}
$$

for all x and y. The function H is called the Hamiltonian function for the system.

EXAMPLE

The Hamiltonian often has a physical meaning for the sysem of ODEs that is modelling a partcular real-world situation, since it represents a quantity that is being conserved over time. They are sometimes also called conservative systems. For example, consider the system of ODEs that represents the undamped harmonic oscillator $y^{\prime \prime}+q y=0$:

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=-q y
\end{aligned}
$$

Let's show that the Hamiltonian for this system is $H(y, v)=\frac{1}{2} v^{2}+\frac{q}{2} y^{2}$ which represents the total energy of the oscillator.

4. Obtaining Hamiltonians For Systems

In general the planar nonlinear system of first order DEs looks like

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y) \\
& \frac{d y}{d t}=g(x, y)
\end{aligned}
$$

In order to find $H(x, y)$ we need to solve the following equations

$$
\begin{aligned}
f(x, y) & =\frac{\partial H}{\partial y} \\
g(x, y) & =-\frac{\partial H}{\partial x}
\end{aligned}
$$

Does a Hamiltonian exist for this system? Well, if it does (and H has continuous second partial derivatives) then $\frac{\partial^{2} H}{\partial x \partial y}=\frac{\partial^{2} H}{\partial y \partial x}$ which would mean that

$$
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} H_{y}=\frac{\partial}{\partial y} H_{x}=-\frac{\partial g}{\partial y}
$$

So in order to check whether a given system of ODEs has a Hamiltonian or not all one needs to do is check whether

$$
\frac{\partial f}{\partial x}=-\frac{\partial g}{\partial y}
$$

Exercise

Is this a Hamiltonian System? If so, find the Hamiltonian function.

$$
\begin{aligned}
& \frac{d x}{d t}=x+y^{2} \\
& \frac{d y}{d t}=y^{2}-x
\end{aligned}
$$

EXAMPLE

Is this a Hamiltonian System? If so, find the Hamiltonian function.

$$
\begin{aligned}
& \frac{d x}{d t}=-x \sin (y)+2 y \\
& \frac{d y}{d t}=-\cos (y)
\end{aligned}
$$

5. Equilibria of Hamiltonian Systems

Hamiltonian Systems Can Never Have Sources or Sinks As Equilibria.
This is a very significant result because it means that conservative systems do not have "attractive or repulsive fixed points." This allows one to analyze and predict the long-term behavior of such systems analyytically.
Consider

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{\partial H}{\partial y} \\
\frac{d y}{d t} & =-\frac{\partial H}{\partial x}
\end{aligned}
$$

at the point $\left(x_{0}, y_{0}\right)$ which is the equilibrium point. Let's use the Linearization Technique to prove this important result.

The Jacobian of the linearized version of the Hamiltonian System at $\left(x_{0}, y_{0}\right)$ will be

What is the trace and determinant of the Jacobian matrix evaluated at $\left(x_{0}, y_{0}\right)$?

What are the eigenvalues of $J\left(x_{0}, y_{0}\right)$?

What do the eigenvalues allow us to conclude about behavior of the system with Hamiltonians near these fixed points?

