Differential Equations

Math 341 Fall 2014
(C)2014 Ron Buckmire

MWF 3:00-3:55pm Fowler 307
http://faculty.oxy.edu/ron/math/341/14/

Worksheet 21

TITLE The Trace-Determinant Plane
CURRENT READING Blanchard, 3.7
Homework Assignments due Monday November 10 (* indicates EXTRA CREDIT)
Section 3.7: 1,2*,6.
Chapter 3 Review: 3, 4, 6, 10, 13, 20*.
Section 5.1: 3, 4, 5, 8, 18, 20*.
Section 5.3: 2, $9,12,13,14,18^{*}$.

SUMMARY

We shall summarize all the possible equilibria one can get with a 2 x 2 linear system of ODEs into one big picture!

1. Summarizing The Possibilities

Given a system of linear ODEs with associated matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ the characteristic polynomial is $(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c=\lambda^{2}-\operatorname{tr}(\mathrm{A}) \lambda+\operatorname{det}(\mathrm{A})=0$.

GroupWork

Your goal is to match the case \# in the left column with the description of its critical point on the right (the list now is jumbled).

CASE 1: Real $\lambda, \lambda_{1} \lambda_{2}<0$
A Center
CASE 2: Real $\lambda, \lambda_{1} \& \lambda_{2}<0$
B Spiral Source
CASE 3: Real $\lambda, \lambda_{1} \& \lambda_{2}>0$
C (Stable) Node
CASE 4: Real $\lambda, \lambda_{1}=\lambda_{2}>0$
D(Unstable) Node
CASE 5: Real $\lambda, \lambda_{1}=\lambda_{2}<0$
E Saddle
CASE 6: Complex $\lambda, \operatorname{Re}(\lambda)>0$
F Spiral Sink
CASE 7: Complex $\lambda, \operatorname{Re}(\lambda)<0$
G Sink
CASE 8: Complex $\lambda, \operatorname{Re}(\lambda)=0$
H Source
Run the LinearPhasePortaits program from the Blanchard, Devaney \& Hall textbook software. Use the slide bars to obtain different values of a, b, c and d and the different kinds of eigenvalues recorded above in the Cases. Record your results in the table below.

CASE \#	a	b	c	d	λ_{1}	λ_{2}	Description
1							
2							
3							
4							
5							
6							
7							
8							

For more details, see the handout from Edwards and Penney, Differential Equations, 3rd Edition, Prentice Hall: 2004, pp 381-389.

2. The Trace-Determinant Plane

Recall that the eigenvalues of a 2 x 2 matrix are given by the rootsof the polynomial $p(\lambda)=$ $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$.
It's also true that the trace of A, denoted $\operatorname{tr}(A)$ is equal to the sum of the eigenvalues $\lambda_{1}+\lambda_{2}$. Let's use the symbol T for $\operatorname{tr}(A)$. The determinant of A, $\operatorname{denoted} \operatorname{det}(A)$ is equal to the product of the eigenvalues $\lambda_{1} \lambda_{2}$. Let's use the symbol D for $\operatorname{det}(A)$.
Then we know that the eigenvalues are given by the solutions to $\lambda^{2}-T \lambda+D=0$, or $\lambda=\frac{T \pm \sqrt{T^{2}-4 D}}{2}$.
In other words, the condition on whether we will have real, complex or repeated eigenvalues depends on the behavior of the discriminant $\Gamma=T^{2}-4 D$. See the figure drawn below. This is known as the Trace-Determinant Plane

This graph is an example of a parameter plane. As the matrix A changes it has different values of T and D and the linear system $\frac{d \vec{x}}{d t}=A \vec{x}$ corresponding to that matrix will be located at a diferent location in (T, D)-space.

Exercise

(1) What kind of phase portraits will exist in (T, D)-space along the D axis?
(2) What about the T-axis?
(3) What kind of phase portraits occur along the curve $D=\frac{T^{2}}{4}$?
(4) What happens as one moves from the region just above the T-axis $(D>0)$ to just below the T-axis $(D>0)$? Does it matter if $T>0$ or $T<0$?
(5) What kinds of solutions exist in the region above the parabola $D=\frac{T^{2}}{4}$?

